已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China

环境科学 遥感 自然地理学 植被(病理学) 中国 土地利用 土地覆盖
作者
Yangchengsi Zhang,Long Guo,Yiyun Chen,Tiezhu Shi,Mei Luo,QingLan Ju,Haitao Zhang,Shanqin Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (14): 1683- 被引量:26
标识
DOI:10.3390/rs11141683
摘要

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助30
2秒前
有点鸭梨呀完成签到 ,获得积分10
3秒前
5秒前
bkagyin应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
only完成签到 ,获得积分10
17秒前
yuki完成签到 ,获得积分10
21秒前
DrN完成签到 ,获得积分10
21秒前
眯眯眼的黎昕完成签到 ,获得积分10
21秒前
小绿茶完成签到 ,获得积分10
21秒前
Li完成签到,获得积分10
26秒前
Loik完成签到,获得积分20
26秒前
andy完成签到,获得积分10
30秒前
非洲散打地黄完成签到 ,获得积分10
34秒前
zho应助完美的翠丝采纳,获得10
35秒前
杰杰小杰完成签到,获得积分10
50秒前
ljy2015完成签到 ,获得积分10
56秒前
iNk完成签到,获得积分0
57秒前
大力关注了科研通微信公众号
1分钟前
真理医生完成签到 ,获得积分10
1分钟前
曲蔚然完成签到 ,获得积分10
1分钟前
华仔应助gaint采纳,获得10
1分钟前
独享尊崇发布了新的文献求助10
1分钟前
种喜欢的花完成签到 ,获得积分10
1分钟前
丨墨月丨完成签到,获得积分10
1分钟前
zhouleiwang发布了新的文献求助10
1分钟前
清淡完成签到,获得积分10
1分钟前
孤岛飞鹰完成签到,获得积分10
1分钟前
青竹完成签到,获得积分10
1分钟前
HuY完成签到 ,获得积分10
1分钟前
活泼蜜蜂完成签到,获得积分10
1分钟前
abc完成签到 ,获得积分10
1分钟前
兜里没糖了完成签到 ,获得积分10
1分钟前
1分钟前
苗条丹南完成签到 ,获得积分10
1分钟前
zzzzzzzqy发布了新的文献求助10
1分钟前
nadia完成签到,获得积分10
1分钟前
超级微笑完成签到 ,获得积分10
1分钟前
yingying完成签到 ,获得积分10
1分钟前
RYYYYYYY233完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775854
求助须知:如何正确求助?哪些是违规求助? 3321483
关于积分的说明 10205746
捐赠科研通 3036545
什么是DOI,文献DOI怎么找? 1666260
邀请新用户注册赠送积分活动 797334
科研通“疑难数据库(出版商)”最低求助积分说明 757794