Control of Band Gap and Band Edge Positions in Gallium–Zinc Oxynitride Grown by Molecular Beam Epitaxy

分子束外延 带隙 纤锌矿晶体结构 材料科学 薄膜 光电子学 宽禁带半导体 微晶 外延 纳米技术 冶金 图层(电子)
作者
Max Kraut,Elise Sirotti,Florian Pantle,Chang‐Ming Jiang,Gabriel Grötzner,Marvin Koch,Laura I. Wagner,Ian D. Sharp,M. Stutzmann
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (14): 7668-7676 被引量:6
标识
DOI:10.1021/acs.jpcc.0c00254
摘要

Gallium–zinc oxynitride (GZNO) is a promising material system for solar-driven overall water splitting, as it exhibits a tunable band gap in the visible range, beneficial positions of valence and conduction band edges, and promising long-term stability. Fabrication of GZNO is traditionally accomplished via a solid state reaction pathway. This limits the growth of thin films or large single crystals and the precise control of the composition, which complicates investigations about fundamental properties of the material, including, for example, the influence of the single constituent ratios on the band gap. In this work, we present the growth of GZNO thin films on sapphire by plasma-assisted molecular beam epitaxy (MBE). The thin films exhibit a crystallite size of up to 50 nm and a wurtzite crystal structure with distinct short-range disorder. Variations of Ga/Zn and N/O flux ratios are found to influence the optical absorption edge of the alloy without major impact on the Urbach energy. Controlled change of the composition of the alloy reveals that the band gap reduction is caused by both an increased valence band energy, which is correlated with the N content, and a decrease of the conduction band energy which is induced by increasing Zn content. Based on these findings, GZNO thin films with band gaps of down to 2.0 eV were fabricated and their photoelectrical properties assessed. Using MBE, we overcome compositional restrictions typically associated with stoichiometric GaN:ZnO solid solutions and provide unprecedented access to new compounds within this materials class. In doing so, we elucidate the specific role of individual elements on band edge energetics and demonstrate new routes to band gap engineering for future photocatalytic and photoelectrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangg发布了新的文献求助10
刚刚
大个应助勤恳的依丝采纳,获得10
1秒前
星星发布了新的文献求助10
1秒前
spray发布了新的文献求助30
1秒前
LZJ完成签到,获得积分10
1秒前
2秒前
YE发布了新的文献求助30
2秒前
MHB应助叫滚滚采纳,获得10
3秒前
wzxxxx发布了新的文献求助10
3秒前
斯文败类应助勤劳傲晴采纳,获得10
4秒前
shilong.yang发布了新的文献求助10
4秒前
momo完成签到,获得积分10
5秒前
wxp_bioinfo完成签到,获得积分10
6秒前
6秒前
桐桐应助wangg采纳,获得10
6秒前
Jun完成签到,获得积分10
7秒前
芝士的酒发布了新的文献求助50
7秒前
8秒前
赘婿应助复杂的问玉采纳,获得30
8秒前
9秒前
9秒前
10秒前
端庄白开水完成签到,获得积分10
10秒前
吕春雨发布了新的文献求助10
10秒前
大个应助wxp_bioinfo采纳,获得10
11秒前
yqq完成签到 ,获得积分10
11秒前
12秒前
13秒前
芝士发布了新的文献求助10
13秒前
橘子发布了新的文献求助10
14秒前
14秒前
14秒前
晨曦发布了新的文献求助10
15秒前
15秒前
kobiy完成签到 ,获得积分10
15秒前
wu完成签到 ,获得积分10
16秒前
蛋泥完成签到,获得积分10
16秒前
顾矜应助mingjie采纳,获得10
17秒前
zhaowenxian发布了新的文献求助10
17秒前
勤劳傲晴发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808