Control of Band Gap and Band Edge Positions in Gallium–Zinc Oxynitride Grown by Molecular Beam Epitaxy

分子束外延 带隙 纤锌矿晶体结构 材料科学 薄膜 光电子学 宽禁带半导体 微晶 外延 纳米技术 冶金 图层(电子)
作者
Max Kraut,Elise Sirotti,Florian Pantle,Chang‐Ming Jiang,Gabriel Grötzner,Marvin Koch,Laura I. Wagner,Ian D. Sharp,M. Stutzmann
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (14): 7668-7676 被引量:6
标识
DOI:10.1021/acs.jpcc.0c00254
摘要

Gallium–zinc oxynitride (GZNO) is a promising material system for solar-driven overall water splitting, as it exhibits a tunable band gap in the visible range, beneficial positions of valence and conduction band edges, and promising long-term stability. Fabrication of GZNO is traditionally accomplished via a solid state reaction pathway. This limits the growth of thin films or large single crystals and the precise control of the composition, which complicates investigations about fundamental properties of the material, including, for example, the influence of the single constituent ratios on the band gap. In this work, we present the growth of GZNO thin films on sapphire by plasma-assisted molecular beam epitaxy (MBE). The thin films exhibit a crystallite size of up to 50 nm and a wurtzite crystal structure with distinct short-range disorder. Variations of Ga/Zn and N/O flux ratios are found to influence the optical absorption edge of the alloy without major impact on the Urbach energy. Controlled change of the composition of the alloy reveals that the band gap reduction is caused by both an increased valence band energy, which is correlated with the N content, and a decrease of the conduction band energy which is induced by increasing Zn content. Based on these findings, GZNO thin films with band gaps of down to 2.0 eV were fabricated and their photoelectrical properties assessed. Using MBE, we overcome compositional restrictions typically associated with stoichiometric GaN:ZnO solid solutions and provide unprecedented access to new compounds within this materials class. In doing so, we elucidate the specific role of individual elements on band edge energetics and demonstrate new routes to band gap engineering for future photocatalytic and photoelectrochemical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HHHhjl完成签到,获得积分10
刚刚
Chaos完成签到,获得积分10
1秒前
CodeCraft应助dt采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
加勒比海带完成签到,获得积分10
2秒前
2秒前
qianduoduo完成签到 ,获得积分10
2秒前
putong发布了新的文献求助10
3秒前
杨宝发布了新的文献求助10
4秒前
科研通AI6应助背后的雨竹采纳,获得10
4秒前
qqwdss发布了新的文献求助10
5秒前
5秒前
李健应助科研小白采纳,获得10
6秒前
科研通AI6应助李开心采纳,获得10
7秒前
qianduoduo关注了科研通微信公众号
8秒前
理理发布了新的文献求助10
8秒前
8秒前
英俊的铭应助Yzz采纳,获得10
8秒前
9秒前
wanci应助WYS采纳,获得10
9秒前
SciGPT应助阿巴阿巴采纳,获得10
9秒前
9秒前
侧耳倾听发布了新的文献求助10
9秒前
10秒前
Kathy发布了新的文献求助10
11秒前
科目三应助Salut采纳,获得10
12秒前
李爱国应助chengzi202采纳,获得10
12秒前
852应助123采纳,获得10
12秒前
12秒前
深情安青应助侧耳倾听采纳,获得10
13秒前
Wlgd完成签到,获得积分20
13秒前
合成研究菜鸟完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
糊里糊涂发布了新的文献求助10
15秒前
碧草柴香发布了新的文献求助100
15秒前
浮游应助杨宝采纳,获得10
15秒前
科研小白书hz完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917