Abstract LB-242: Proteomic Data Commons: A resource for proteogenomic analysis

元数据 平民 计算机科学 资源(消歧) 数据共享 数据科学 癌症 计算生物学 数据集成 精密医学 领域(数学分析) 生物信息学 数据挖掘 生物 万维网 医学 病理 生态学 数学分析 替代医学 遗传学 数学 计算机网络
作者
Ratna R. Thangudu,Paul Rudnick,Michael Holck,Deepak Singhal,Michael J. MacCoss,Nathan Edwards,Karen A. Ketchum,Christopher R. Kinsinger,Erika Kim,Anand Basu
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:80 (16_Supplement): LB-242 被引量:3
标识
DOI:10.1158/1538-7445.am2020-lb-242
摘要

Abstract The objective of the National Cancer Institutes' Proteomic Data Commons (PDC) is to make cancer-related proteomic datasets accessible to the public. The PDC provides the cancer research community with a unified data repository that enables data sharing across cancer proteomic studies and also enables multi-omic integration in support of precision medicine. As a domain-specific repository within the Cancer Research Data Commons (CRDC), the vision for the PDC is to provide researchers the ability to find and analyze proteomic data across a wide variety of tumor types. Currently, the PDC houses data, supported by a large collection of metadata attributes, for nearly 40 datasets from over 12 cancer types produced by several large-scale cancer research programs, each with cohort sizes greater than 100 patients. The PDC facilitates the analysis of proteomic, genomic, and imaging data derived from the same tumor. Most of the datasets in the PDC also have corresponding genomic and imaging data available in the Genomic Data Commons and The Cancer Imaging Archive respectively. Researchers can discover which genomic variants are detectable at the protein-level or better understand associations between gene expression, copy number variation, and protein abundance. The resource is currently available to the public in beta phase (https://pdc.esacinc.com) and will be officially launched on the cancer.gov domain in March 2020. The PDC data portal is supported by a robust and extensible data model and provides user-friendly exploration, visualization and data analysis. This allows researchers to search for and visualize expression of proteins (through their mapped genes) across all studies, analyze protein abundance for all cases in a study through heatmaps, build and explore pan-cancer cohorts using highly curated, clinical metadata, and comprehensively view a study without needing to download the data. The PDC provides quick access to mapping of peptide identities and quantities on the human genome as well as protein databases containing patient/tumor-specific variants and novel splicing events. It also enables fast, accurate, and convenient proteomic validation of novel genomic alterations through the PepQuery algorithm. Through a highly versatile application programming interface (API), PDC allows users to interact with data programmatically and facilitates integration with data from other resources in their scripts for multi-omic analysis. Big data interoperability is critical for progress in precision medicine. PDC is designed to interoperate with other resources including the CRDC nodes, allowing users to analyze PDC data with the tools and pipelines available on the NCI cloud resources. It further allows users to use their own tools to co-analyze genomic and proteomic data available from a common sample on Amazon Web Services (AWS) platform or on a local system. The presentation will provide an overview of the PDC and it's available datasets, as well as a discussion of how it facilitates multi-omic data analyses. Citation Format: Ratna Rajesh Thangudu, Paul A. Rudnick, Michael Holck, Deepak Singhal, Michael J. MacCoss, Nathan J. Edwards, Karen A. Ketchum, Christopher R. Kinsinger, Erika Kim, Anand Basu. Proteomic Data Commons: A resource for proteogenomic analysis [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr LB-242.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo完成签到 ,获得积分10
1秒前
天才幸运鱼完成签到,获得积分10
1秒前
HawreKhdir关注了科研通微信公众号
1秒前
xiao双月完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
3秒前
jor666完成签到,获得积分10
3秒前
暴躁的问兰完成签到 ,获得积分10
5秒前
5秒前
Leohp完成签到,获得积分10
6秒前
凸迩丝儿完成签到 ,获得积分10
6秒前
跳跃的惮完成签到,获得积分10
6秒前
7秒前
不安士晋完成签到,获得积分10
10秒前
把糖还我发布了新的文献求助10
12秒前
生动朝雪完成签到 ,获得积分10
12秒前
Miyya完成签到,获得积分10
12秒前
DD完成签到,获得积分10
12秒前
科研通AI2S应助siying采纳,获得10
13秒前
劳资懒得起网名完成签到,获得积分10
14秒前
14秒前
长安完成签到 ,获得积分10
15秒前
铁甲小杨完成签到,获得积分10
15秒前
15秒前
15秒前
hhm完成签到,获得积分10
16秒前
闪闪星星完成签到,获得积分10
16秒前
Chen完成签到 ,获得积分10
18秒前
cenzy完成签到,获得积分10
19秒前
专注的水壶完成签到 ,获得积分10
19秒前
唐落音完成签到,获得积分10
20秒前
HawreKhdir发布了新的文献求助30
20秒前
元宝完成签到 ,获得积分10
22秒前
嗯哼应助聪慧的太君采纳,获得20
23秒前
cmh完成签到 ,获得积分10
23秒前
25秒前
25秒前
淼淼之锋完成签到 ,获得积分10
25秒前
wyn完成签到,获得积分10
26秒前
Darknewnew完成签到,获得积分10
27秒前
宜醉宜游宜睡应助leiiiiiiii采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257179
求助须知:如何正确求助?哪些是违规求助? 2899075
关于积分的说明 8303598
捐赠科研通 2568390
什么是DOI,文献DOI怎么找? 1395045
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683