胞浆
癌细胞
内体
内吞循环
MDMX公司
细胞生物学
细胞
内吞作用
肽
生物化学
A549电池
生物
细胞凋亡
细胞内
化学
平方毫米
癌症
酶
遗传学
作者
Grégoire J.-B. Philippe,Anna Mittermeier,Nicole Lawrence,Yen‐Hua Huang,Nicholas D. Condon,Alexander Loewer,David J. Craik,Sónia Troeira Henriques
标识
DOI:10.1021/acschembio.0c00988
摘要
Peptides are being developed as targeted anticancer drugs to modulate cytosolic protein–protein interactions involved in cancer progression. However, their use as therapeutics is often limited by their low cell membrane permeation and/or inability to reach cytosolic targets. Conjugation to cell penetrating peptides has been successfully used to improve the cytosolic delivery of high affinity binder peptides, but cellular uptake does not always result in modulation of the targeted pathway. To overcome this limitation, we developed "angler peptides" by conjugating KD3, a noncell permeable but potent and specific peptide inhibitor of p53:MDM2 and p53:MDMX interactions, with a set of cyclic cell-penetrating peptides. We examined their binding affinity for MDM2 and MDMX, the cell entry mechanism, and role in reactivation of the p53 pathway. We identified two angler peptides, cTAT–KD3 and cR10–KD3, able to activate the p53 pathway in cancer cells. cTAT–KD3 entered cells via endocytic pathways, escaped endosomes, and activated the p53 pathway in breast (MCF7), lung (A549), and colon (HCT116) cancer cell lines at concentrations in the range of 1–12 μM. cR10–KD3 reached the cytosol via direct membrane translocation and activated the p53 pathway at 1 μM in all the tested cell lines. Our work demonstrates that nonpermeable anticancer peptides can be delivered into the cytosol and inhibit intracellular cancer pathways when they are conjugated with stable cell penetrating peptides. The mechanistic studies suggest that direct translocation leads to less toxicity, higher cytosol delivery at lower concentrations, and lower dependencies on the membrane of the tested cell line than occurs for an endocytic pathway with endosomal escape. The angler strategy can rescue high affinity peptide binders identified from high throughput screening and convert them into targeted anticancer therapeutics, but investigation of their cellular uptake and cell death mechanisms is essential to confirming modulation of the targeted cancer pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI