A Data-Driven Water-Soaking Model for Optimizing Shut-In Time of Shale Gas/Oil Wells Prior to Flowback of Fracturing Fluids

水力压裂 石油工程 油页岩 井身刺激 地质学 断裂(地质) 油井 岩土工程 环境科学 石油 水库工程 量子力学 各向异性 物理 古生物学
作者
Rashid Shaibu,Boyun Guo
标识
DOI:10.2118/201479-ms
摘要

Abstract This paper presents a method for identifying the optimum soaking time between the cessation of pumping, and the flowback of hydraulic fracturing fluids after a hydraulic fracture stimulation job, to increase productivity of shale gas and oil wells. Multiple cracks were observed at the surfaces of cores from a shale oil reservoir under simulated water-soaking conditions. The observation proposes a hypothesis that the formation of cracks should increase well productivity. Well shut-in pressure data recorded in a watersoaking process in a shale gas reservoir were employed to derive a mathematical model to describe the process of crack propagation in shale gas/oil formations. This crack model was incorporated in a well productivity model to form an objective function for selection of the water soaking time. A field case was studied with the mathematical model to proof the hypothesis and explore factors affecting the optimum water-soaking time. Analysis of the model shows a quick increase of well productivity with water-soaking time in the beginning followed by a trend of leveling-off. The water-soaking process is mainly controlled by the number of cracks along the bedding plane. High viscosity of fracturing fluid corresponds to longer soaking time, while increasing water-shale interfacial tension reduces the optimum soaking time. The effect of different initial water saturations on optimum soaking time was found to be insignificant. If real time shut-in pressure data are used, this technique can translate the pressure data to dynamic crack propagation data and "monitor" the potential well productivity as a function of water-soaking time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222关闭了222文献求助
1秒前
chinh完成签到,获得积分10
1秒前
钮祜禄废废完成签到,获得积分10
1秒前
1秒前
曾经富完成签到,获得积分10
3秒前
酷酷海豚完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
青青完成签到 ,获得积分10
7秒前
Chan0501发布了新的文献求助10
7秒前
昭昭完成签到,获得积分10
8秒前
SCI发布了新的文献求助10
8秒前
卓然完成签到,获得积分10
8秒前
李来仪发布了新的文献求助10
9秒前
10秒前
菲菲呀完成签到,获得积分10
10秒前
Rrr发布了新的文献求助10
10秒前
12秒前
陌路完成签到,获得积分10
12秒前
善学以致用应助leon采纳,获得30
12秒前
13秒前
斯文败类应助嘻嘻采纳,获得10
13秒前
科研通AI5应助小只bb采纳,获得30
13秒前
yyyy发布了新的文献求助10
13秒前
2023AKY完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
彭于晏应助惠惠采纳,获得10
16秒前
风魂剑主完成签到,获得积分10
17秒前
yryzst9899发布了新的文献求助10
17秒前
18秒前
飘逸小笼包完成签到,获得积分10
18秒前
科研小郑完成签到,获得积分10
18秒前
CipherSage应助熊boy采纳,获得10
18秒前
XXGG完成签到 ,获得积分10
19秒前
大个应助舒心赛凤采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794