A Data-Driven Water-Soaking Model for Optimizing Shut-In Time of Shale Gas/Oil Wells Prior to Flowback of Fracturing Fluids

水力压裂 石油工程 油页岩 井身刺激 地质学 断裂(地质) 油井 岩土工程 环境科学 石油 水库工程 古生物学 物理 各向异性 量子力学
作者
Rashid Shaibu,Boyun Guo
标识
DOI:10.2118/201479-ms
摘要

Abstract This paper presents a method for identifying the optimum soaking time between the cessation of pumping, and the flowback of hydraulic fracturing fluids after a hydraulic fracture stimulation job, to increase productivity of shale gas and oil wells. Multiple cracks were observed at the surfaces of cores from a shale oil reservoir under simulated water-soaking conditions. The observation proposes a hypothesis that the formation of cracks should increase well productivity. Well shut-in pressure data recorded in a watersoaking process in a shale gas reservoir were employed to derive a mathematical model to describe the process of crack propagation in shale gas/oil formations. This crack model was incorporated in a well productivity model to form an objective function for selection of the water soaking time. A field case was studied with the mathematical model to proof the hypothesis and explore factors affecting the optimum water-soaking time. Analysis of the model shows a quick increase of well productivity with water-soaking time in the beginning followed by a trend of leveling-off. The water-soaking process is mainly controlled by the number of cracks along the bedding plane. High viscosity of fracturing fluid corresponds to longer soaking time, while increasing water-shale interfacial tension reduces the optimum soaking time. The effect of different initial water saturations on optimum soaking time was found to be insignificant. If real time shut-in pressure data are used, this technique can translate the pressure data to dynamic crack propagation data and "monitor" the potential well productivity as a function of water-soaking time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士发布了新的文献求助10
1秒前
万能图书馆应助majf采纳,获得10
1秒前
2秒前
YuZhang8034完成签到,获得积分10
2秒前
woy031222完成签到 ,获得积分10
3秒前
ZOE应助2549360318采纳,获得30
3秒前
chen完成签到,获得积分10
3秒前
enen发布了新的文献求助10
3秒前
3秒前
4秒前
paixxxxx完成签到,获得积分10
4秒前
CodeCraft应助zzzwww采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
哈哈哈哈哈哈完成签到 ,获得积分10
5秒前
王楠楠完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
酷酷三问发布了新的文献求助10
8秒前
9秒前
9秒前
落后的老太完成签到,获得积分10
9秒前
chen发布了新的文献求助10
9秒前
张欣宇发布了新的文献求助10
10秒前
Abdurrahman完成签到,获得积分10
10秒前
蓝天发布了新的文献求助10
10秒前
硬币完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
科研求求你嘛完成签到,获得积分10
11秒前
愉快的苑博完成签到,获得积分10
12秒前
次一口多多完成签到,获得积分10
12秒前
12秒前
xx发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836