A Data-Driven Water-Soaking Model for Optimizing Shut-In Time of Shale Gas/Oil Wells Prior to Flowback of Fracturing Fluids

水力压裂 石油工程 油页岩 井身刺激 地质学 断裂(地质) 油井 岩土工程 环境科学 石油 水库工程 量子力学 各向异性 物理 古生物学
作者
Rashid Shaibu,Boyun Guo
标识
DOI:10.2118/201479-ms
摘要

Abstract This paper presents a method for identifying the optimum soaking time between the cessation of pumping, and the flowback of hydraulic fracturing fluids after a hydraulic fracture stimulation job, to increase productivity of shale gas and oil wells. Multiple cracks were observed at the surfaces of cores from a shale oil reservoir under simulated water-soaking conditions. The observation proposes a hypothesis that the formation of cracks should increase well productivity. Well shut-in pressure data recorded in a watersoaking process in a shale gas reservoir were employed to derive a mathematical model to describe the process of crack propagation in shale gas/oil formations. This crack model was incorporated in a well productivity model to form an objective function for selection of the water soaking time. A field case was studied with the mathematical model to proof the hypothesis and explore factors affecting the optimum water-soaking time. Analysis of the model shows a quick increase of well productivity with water-soaking time in the beginning followed by a trend of leveling-off. The water-soaking process is mainly controlled by the number of cracks along the bedding plane. High viscosity of fracturing fluid corresponds to longer soaking time, while increasing water-shale interfacial tension reduces the optimum soaking time. The effect of different initial water saturations on optimum soaking time was found to be insignificant. If real time shut-in pressure data are used, this technique can translate the pressure data to dynamic crack propagation data and "monitor" the potential well productivity as a function of water-soaking time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃的饭广泛应助奥米希采纳,获得20
刚刚
虚幻的彤发布了新的文献求助10
刚刚
RRRCY发布了新的文献求助10
刚刚
之晴发布了新的文献求助10
1秒前
斯文白白发布了新的文献求助30
1秒前
hhh123发布了新的文献求助10
1秒前
ED应助竹峪卿采纳,获得10
2秒前
wind发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
James完成签到,获得积分10
4秒前
Xu完成签到,获得积分20
4秒前
5秒前
百里盼夏发布了新的文献求助10
5秒前
小松丸ko完成签到 ,获得积分10
5秒前
Owen应助ly采纳,获得10
5秒前
6秒前
6秒前
guosheng发布了新的文献求助10
6秒前
dypdyp应助谜呀采纳,获得10
6秒前
诸凡梦完成签到,获得积分10
7秒前
爱笑可仁完成签到 ,获得积分10
7秒前
7秒前
Akim应助KAJIKU采纳,获得10
7秒前
yanzinie发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
sun_lin完成签到,获得积分10
8秒前
梓歆发布了新的文献求助10
9秒前
刺五加发布了新的文献求助10
10秒前
Hayat应助没有昵称采纳,获得10
10秒前
吴子鹏完成签到,获得积分10
10秒前
10秒前
山鬼发布了新的文献求助10
11秒前
小郭求学完成签到,获得积分20
11秒前
13秒前
闲来逛逛007完成签到 ,获得积分10
13秒前
15秒前
范凛完成签到,获得积分10
15秒前
田様应助雨下着的坡道采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306