Short-Term Traffic Flow Forecasting Method With M-B-LSTM Hybrid Network

过度拟合 计算机科学 深度学习 人工智能 期限(时间) 流量(计算机网络) 机器学习 人工神经网络 交通生成模型 统计的 实时计算 数学 计算机网络 统计 量子力学 物理
作者
Zhaowei Qu,Haitao Li,Zhihui Li,Zhong Tao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 225-235 被引量:64
标识
DOI:10.1109/tits.2020.3009725
摘要

Deep learning has achieved good performance in short-term traffic forecasting recently. However, the stochasticity and distribution imbalance are main characteristics to traffic flow, and these will bring the uncertainty and induce the network overfitting problem during deep learning. To deal with the problems, a new end-to-end hybrid deep learning network model, named M-B-LSTM, is proposed for short-term traffic flow forecasting in this paper. In the M-B-LSTM model, an online self-learning network is constructed as a data mapping layer to learn and equalize the traffic flow statistic distribution for reducing the effect of distribution imbalance and overfitting problem during network learning. Besides, the deep bidirectional long short-term memory network (DBLSTM) is introduced to reduce the uncertainty problem by forward and reverse contexts approximation process in the stochasticity reducing layer, and then the long short-term memory network (LSTM) is used to forecast the next traffic flow state in the forecasting layer. Furthermore, sufficient comparative experiments have been conducted and the results show the proposed model has better ability on solving uncertainty and overfitting problems than the state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
善学以致用应助李佳薇采纳,获得10
3秒前
心若在梦就在完成签到,获得积分10
3秒前
guo发布了新的文献求助10
3秒前
Lucas应助聪慧乐松采纳,获得10
4秒前
扶光发布了新的文献求助10
4秒前
4秒前
圆圆发布了新的文献求助10
4秒前
4秒前
桀庚发布了新的文献求助10
5秒前
6秒前
科研小虫应助善良的沛山采纳,获得10
6秒前
roosterstorm完成签到,获得积分10
6秒前
dan发布了新的文献求助10
6秒前
肉肉发布了新的文献求助10
6秒前
gh发布了新的文献求助10
7秒前
泡泡发布了新的文献求助10
7秒前
11发布了新的文献求助10
8秒前
9秒前
科目三应助王艺霖采纳,获得10
9秒前
脑洞疼应助风吹耳边采纳,获得10
9秒前
lisastream完成签到,获得积分10
9秒前
11秒前
Ryan发布了新的文献求助10
11秒前
拓跋凝海完成签到,获得积分10
12秒前
13秒前
小蘑菇应助糊涂的雪枫采纳,获得30
14秒前
null应助浮笙采纳,获得10
15秒前
开朗寻凝发布了新的文献求助10
15秒前
15秒前
桀庚完成签到,获得积分10
15秒前
yxr完成签到,获得积分10
16秒前
肉肉完成签到,获得积分10
16秒前
pqy完成签到 ,获得积分10
16秒前
jelly10应助guan采纳,获得10
17秒前
19秒前
奋斗绿蕊发布了新的文献求助10
19秒前
李钢完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823