Short-Term Traffic Flow Forecasting Method With M-B-LSTM Hybrid Network

过度拟合 计算机科学 深度学习 人工智能 期限(时间) 流量(计算机网络) 机器学习 人工神经网络 交通生成模型 统计的 实时计算 数学 计算机网络 统计 量子力学 物理
作者
Zhaowei Qu,Haitao Li,Zhihui Li,Zhong Tao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 225-235 被引量:64
标识
DOI:10.1109/tits.2020.3009725
摘要

Deep learning has achieved good performance in short-term traffic forecasting recently. However, the stochasticity and distribution imbalance are main characteristics to traffic flow, and these will bring the uncertainty and induce the network overfitting problem during deep learning. To deal with the problems, a new end-to-end hybrid deep learning network model, named M-B-LSTM, is proposed for short-term traffic flow forecasting in this paper. In the M-B-LSTM model, an online self-learning network is constructed as a data mapping layer to learn and equalize the traffic flow statistic distribution for reducing the effect of distribution imbalance and overfitting problem during network learning. Besides, the deep bidirectional long short-term memory network (DBLSTM) is introduced to reduce the uncertainty problem by forward and reverse contexts approximation process in the stochasticity reducing layer, and then the long short-term memory network (LSTM) is used to forecast the next traffic flow state in the forecasting layer. Furthermore, sufficient comparative experiments have been conducted and the results show the proposed model has better ability on solving uncertainty and overfitting problems than the state-of-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MADKAI发布了新的文献求助20
刚刚
xiaoli完成签到,获得积分10
1秒前
清浅完成签到,获得积分10
1秒前
赘婿应助深海soda采纳,获得10
1秒前
WJM完成签到,获得积分10
1秒前
小星星完成签到,获得积分10
1秒前
啵乐乐发布了新的文献求助10
1秒前
爆米花应助瘦瘦白昼采纳,获得10
1秒前
wintercyan发布了新的文献求助20
1秒前
大雁高飞出不胜寒完成签到,获得积分10
2秒前
PSCs发布了新的文献求助10
2秒前
QWJ完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
zxy完成签到,获得积分10
4秒前
sober完成签到,获得积分10
4秒前
4秒前
mmknnk完成签到,获得积分20
4秒前
cc2064完成签到 ,获得积分10
4秒前
调皮冰旋发布了新的文献求助10
5秒前
西哈哈完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
Orange应助幸福胡萝卜采纳,获得10
5秒前
SHDeathlock完成签到,获得积分10
6秒前
习习发布了新的文献求助100
7秒前
Jolene66完成签到,获得积分10
7秒前
研友_8RlQ2n发布了新的文献求助10
7秒前
8秒前
852应助Pangsj采纳,获得10
8秒前
Song完成签到 ,获得积分10
8秒前
8秒前
9秒前
大胆夜绿发布了新的文献求助10
9秒前
Dr终年完成签到,获得积分10
9秒前
katharsis完成签到,获得积分10
9秒前
Ricardo发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678