Implementation of Machine Learning for Fault Classification on Vehicle Power Transmission System

计算机科学 人工智能 底盘 支持向量机 Mel倒谱 人工神经网络 机器学习 特征提取 多层感知器 模式识别(心理学) 工程类 结构工程
作者
Cihun‐Siyong Alex Gong,Chih-Hui Simon Su,Kuei-Hung Tseng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (24): 15163-15176 被引量:42
标识
DOI:10.1109/jsen.2020.3010291
摘要

This research presents the implementation of machine learning (ML) for fault classification and diagnosis on vehicle power transmission system (VPTS). Machine learning method can be used to classify their independent diagnostic components for each fault characteristic states. Under the internet of vehicle (IoV) demands, early prediction system is necessary to notify the drivers or clouding services how the vehicle maintenance and the driving safety degree. The acoustic sensors can be carried out to realize a real-time diagnostic system for automobile engine and chassis transmission system. This method is to acquire the dynamics acoustic signals of the vehicle through the data acquisition device (DAQ). These acoustic features is firstly filtered by Mel-scale frequency cepstral coefficient (MFCC) to determine the each characteristic states of the vehicle engine and the chassis parts. Next, support vector machine (SVM), multilayer perceptron (MLP), deep neural networks (DNN),principal component analysis (PCA), ${k}$ -nearest neighbor (${k}$ -NN), and decision tree (DT) several classifier algorithms are applied to implement the feature classification of fault causes for stability and higher accuracy of VPTS. And dimension reduction model is compared and applied in proposed ML algorithms by an PCA algorithm. All training model datasets are carried out in Matlab and Python pytorch platform by using Nvidia graphics processing unit (GPU) processors, they are evaluated and discussed. The effectiveness on the filtered feature database in the experiments is classified by means of this research proposed schemes. The expected experimental results of the classification and identification with respect to different fifteen VPTS conditions are obtained and inferred.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的寒梦完成签到,获得积分10
刚刚
汉堡包应助宝海青采纳,获得10
刚刚
LEE123发布了新的文献求助10
1秒前
1秒前
李里哩完成签到,获得积分10
1秒前
上官若男应助飘逸的问晴采纳,获得10
1秒前
情怀应助标致断缘采纳,获得10
1秒前
Shandongdaxiu发布了新的文献求助10
3秒前
3秒前
Leo完成签到,获得积分10
3秒前
科研小白要毕业完成签到,获得积分10
3秒前
一墨完成签到,获得积分10
4秒前
4秒前
4秒前
今后应助自由的傲易采纳,获得10
5秒前
蓝色花生豆完成签到,获得积分10
6秒前
6秒前
6秒前
AKN完成签到,获得积分10
6秒前
6秒前
7秒前
white完成签到,获得积分10
7秒前
7秒前
minminzi完成签到,获得积分10
7秒前
7秒前
7秒前
识途完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
莹yy发布了新的文献求助10
9秒前
momo完成签到 ,获得积分10
10秒前
vvvvyl应助zsk12138采纳,获得10
10秒前
vvvvyl应助wwx采纳,获得10
11秒前
还不错发布了新的文献求助10
11秒前
何三岁发布了新的文献求助10
11秒前
12秒前
呆萌安卉完成签到,获得积分10
12秒前
巴斯光年发布了新的文献求助10
12秒前
南敏株发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469657
求助须知:如何正确求助?哪些是违规求助? 3062868
关于积分的说明 9080250
捐赠科研通 2753067
什么是DOI,文献DOI怎么找? 1510691
科研通“疑难数据库(出版商)”最低求助积分说明 697975
邀请新用户注册赠送积分活动 697938