胶粘剂
材料科学
聚合物
共聚物
环氧树脂
单体
儿茶酚
复合材料
海水
高分子化学
化学工程
有机化学
化学
工程类
地质学
海洋学
图层(电子)
作者
Xinyi Sha,Changxu Zhang,Meiwei Qi,Longhui Zheng,Beike Cai,Feng Chen,Yuling Wang,Yongfeng Zhou
标识
DOI:10.1002/marc.202000055
摘要
Abstract Marine mussels have the ability to cling to various surfaces at wet or underwater conditions, which inspires the research of catechol‐functionalized polymers (CFPs) to develop high‐performance adhesive materials. However, these polymeric adhesives generally face the problems of complex synthetic route, and it is still high challenging to prepare CFPs with excellent adhesive performance both at dry and underwater conditions. Herein, a mussel‐inspired alternating copolymer, poly(dopamine‐ alt ‐2,2‐bis(4‐glycidyloxyphenyl)propane) (P(DA‐ a ‐BGOP)), is synthesized in one step by using commercially available monomers through epoxy‐amino click chemistry. The incorporation of polar groups and rigid bisphenol A structures into the polymer backbone enhances the cohesion energy of polymer matrix. The alternating polymer structure endows the polymers with high catechol content and controlled polymer sequence. As a result, P(DA‐ a ‐BGOP) exhibits a strong bonding strength as high as 16.39 ± 2.13 MPa on stainless steel substrates after a hot pressing procedure and displays a bonding strength of 1.05 ± 0.05 MPa on glass substrates at an under‐seawater condition, which surpasses most commercial adhesives.
科研通智能强力驱动
Strongly Powered by AbleSci AI