Robots or frontline employees? Exploring customers’ attributions of responsibility and stability after service failure or success

归属 服务(商务) 渐晕 营销 业务 服务补救 服务设计 服务机器人 服务提供商 机器人 公共关系 知识管理 心理学 计算机科学 社会心理学 服务质量 人工智能 政治学
作者
Daniel Belanche,Luis V. Casaló,Carlos Flavián,Jeroen Schepers
出处
期刊:Journal of Service Management 卷期号:31 (2): 267-289 被引量:212
标识
DOI:10.1108/josm-05-2019-0156
摘要

Purpose Service robots are taking over the organizational frontline. Despite a recent surge in studies on this topic, extant works are predominantly conceptual in nature. The purpose of this paper is to provide valuable empirical insights by building on the attribution theory. Design/methodology/approach Two vignette-based experimental studies were employed. Data were collected from US respondents who were randomly assigned to scenarios focusing on a hotel’s reception service and restaurant’s waiter service. Findings Results indicate that respondents make stronger attributions of responsibility for the service performance toward humans than toward robots, especially when a service failure occurs. Customers thus attribute responsibility to the firm rather than the frontline robot. Interestingly, the perceived stability of the performance is greater when the service is conducted by a robot than by an employee. This implies that customers expect employees to shape up after a poor service encounter but expect little improvement in robots’ performance over time. Practical implications Robots are perceived to be more representative of a firm than employees. To avoid harmful customer attributions, service providers should clearly communicate to customers that frontline robots pack sophisticated analytical, rather than simple mechanical, artificial intelligence technology that explicitly learns from service failures. Originality/value Customer responses to frontline robots have remained largely unexplored. This paper is the first to explore the attributions that customers make when they experience robots in the frontline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可乐完成签到 ,获得积分10
2秒前
槿裡完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
yangqiu完成签到,获得积分10
4秒前
5秒前
RRR发布了新的文献求助10
5秒前
丰富的如冰完成签到,获得积分10
5秒前
科研通AI2S应助kathyzhang采纳,获得10
6秒前
风趣霆发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
汉堡包应助巧克力大王采纳,获得10
8秒前
科研通AI5应助诚心寄灵采纳,获得10
8秒前
Ame发布了新的文献求助10
8秒前
9秒前
Abi发布了新的文献求助10
9秒前
雪糕发布了新的文献求助10
9秒前
fredfqk发布了新的文献求助10
10秒前
共享精神应助洞两采纳,获得10
11秒前
yangqiu发布了新的文献求助10
11秒前
文章刻骨几人知完成签到,获得积分10
12秒前
RJ_W_HT发布了新的文献求助10
12秒前
guo发布了新的文献求助10
12秒前
Amory发布了新的文献求助10
12秒前
fan051500完成签到 ,获得积分10
13秒前
14秒前
14秒前
mxxz发布了新的文献求助10
15秒前
愉快夕阳完成签到,获得积分10
17秒前
Orange应助三木采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
ME3完成签到,获得积分10
18秒前
共享精神应助tytyty采纳,获得10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199