Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 古生物学 生态位 航空航天工程
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tctc完成签到 ,获得积分20
刚刚
1秒前
1秒前
健忘聪健发布了新的文献求助10
1秒前
浮游应助arizaki7采纳,获得10
1秒前
小蘑菇应助arizaki7采纳,获得10
1秒前
lyzwsw发布了新的文献求助10
1秒前
小蓝完成签到,获得积分10
4秒前
FashionBoy应助欣慰雪巧采纳,获得10
4秒前
T_KYG发布了新的文献求助10
5秒前
虞雪儿儿完成签到 ,获得积分0
5秒前
5秒前
Richard完成签到,获得积分10
5秒前
6秒前
6秒前
寒冷半雪完成签到,获得积分10
8秒前
斯文败类应助温暖如风采纳,获得10
10秒前
unyield完成签到,获得积分10
10秒前
flysky120发布了新的文献求助10
11秒前
drfang完成签到 ,获得积分10
12秒前
潇洒的柚子完成签到,获得积分10
12秒前
传统的孤丝完成签到 ,获得积分10
12秒前
13秒前
LLLLLL完成签到,获得积分10
13秒前
科研通AI6应助欣喜的雪枫采纳,获得10
13秒前
搜集达人应助2231131采纳,获得10
13秒前
13秒前
荔枝发布了新的文献求助30
16秒前
18秒前
huai完成签到,获得积分10
18秒前
丁真发布了新的文献求助100
19秒前
量子星尘发布了新的文献求助10
19秒前
Rinyee_1008完成签到,获得积分20
19秒前
20秒前
21秒前
22秒前
嗯哼完成签到,获得积分10
23秒前
桐桐应助符欣瑜采纳,获得10
24秒前
25秒前
2231131发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571822
求助须知:如何正确求助?哪些是违规求助? 4656993
关于积分的说明 14718727
捐赠科研通 4597831
什么是DOI,文献DOI怎么找? 2523395
邀请新用户注册赠送积分活动 1494239
关于科研通互助平台的介绍 1464312