Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 生态位 航空航天工程 古生物学
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
ABC完成签到,获得积分10
10秒前
liukanhai应助科研通管家采纳,获得10
10秒前
搜集达人应助Wang采纳,获得10
13秒前
14秒前
蒲蒲完成签到 ,获得积分10
17秒前
zhaosiqi完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助20
23秒前
28秒前
30秒前
月军完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
40秒前
江幻天完成签到,获得积分10
43秒前
韩钰小宝完成签到 ,获得积分10
54秒前
飞快的雅青完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
58秒前
Kidmuse完成签到,获得积分10
1分钟前
追寻的续完成签到 ,获得积分10
1分钟前
1分钟前
bckl888完成签到,获得积分10
1分钟前
1分钟前
bill完成签到,获得积分10
1分钟前
明理问柳发布了新的文献求助10
1分钟前
ky应助xiaoX12138采纳,获得10
1分钟前
明理问柳完成签到,获得积分10
1分钟前
坚强的嚣完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
gxzsdf完成签到 ,获得积分10
1分钟前
我思故我在完成签到,获得积分10
1分钟前
1分钟前
阿帕奇完成签到 ,获得积分10
1分钟前
Conner完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
wol007完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
Justtry完成签到 ,获得积分20
1分钟前
naiyouqiu1989完成签到,获得积分10
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
花生四烯酸完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104