Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 古生物学 生态位 航空航天工程
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao12wang发布了新的文献求助10
刚刚
L坨坨完成签到 ,获得积分10
刚刚
耿强发布了新的文献求助10
刚刚
jmy发布了新的文献求助10
1秒前
科研小黑子完成签到,获得积分20
1秒前
1秒前
苏尔完成签到,获得积分10
1秒前
1秒前
浅墨完成签到 ,获得积分10
1秒前
mony完成签到,获得积分10
1秒前
2秒前
2秒前
huizi发布了新的文献求助10
2秒前
3秒前
菠萝冰棒发布了新的文献求助10
3秒前
3秒前
请叫我风吹麦浪完成签到,获得积分0
3秒前
清爽雪枫发布了新的文献求助10
4秒前
4秒前
4秒前
李健应助斜杠武采纳,获得10
5秒前
fengxj完成签到 ,获得积分10
5秒前
5秒前
5秒前
七七给七七的求助进行了留言
5秒前
6秒前
6秒前
Hello应助冷静的平安采纳,获得10
6秒前
FKVB_完成签到 ,获得积分10
7秒前
饼饼完成签到,获得积分10
7秒前
天天快乐应助木木采纳,获得10
7秒前
艺玲发布了新的文献求助10
7秒前
大气飞丹发布了新的文献求助10
7秒前
丫丫完成签到,获得积分10
8秒前
科研通AI2S应助觅桃乌龙采纳,获得10
8秒前
耿强完成签到,获得积分10
8秒前
wanci应助dd采纳,获得10
9秒前
汉堡包应助cuihl123采纳,获得10
9秒前
李浓完成签到,获得积分10
9秒前
DreamMaker发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759