Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 古生物学 生态位 航空航天工程
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangnaozi发布了新的文献求助10
刚刚
smoothgoing完成签到 ,获得积分20
刚刚
科研通AI6应助魏铭哲采纳,获得10
1秒前
顺心飞雪完成签到,获得积分10
1秒前
1秒前
充电宝应助汪姝采纳,获得10
1秒前
昂啵啵发布了新的文献求助10
1秒前
1秒前
领导范儿应助zpz采纳,获得10
2秒前
ZeKaWa应助快乐的康采纳,获得10
2秒前
小杭76发布了新的文献求助10
2秒前
娃娃鱼发布了新的文献求助10
3秒前
4秒前
4秒前
英姑应助猪猪hero采纳,获得10
4秒前
南笙发布了新的文献求助10
4秒前
DDDD应助MADsc采纳,获得30
4秒前
4秒前
5秒前
5秒前
5秒前
zy完成签到,获得积分10
5秒前
jin发布了新的文献求助10
6秒前
热爱生活发布了新的文献求助10
6秒前
6秒前
冷傲的如柏完成签到,获得积分10
6秒前
1anBlackMan发布了新的文献求助10
6秒前
6秒前
6秒前
answer发布了新的文献求助10
6秒前
深情安青应助adinike采纳,获得10
7秒前
7秒前
酷波er应助浪子采纳,获得10
8秒前
科研通AI6应助学术小白采纳,获得10
8秒前
翠翠完成签到,获得积分10
8秒前
在水一方应助XY采纳,获得10
8秒前
彦成完成签到,获得积分10
8秒前
大模型应助露亮采纳,获得10
8秒前
11231发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577