Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 古生物学 生态位 航空航天工程
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助yanzi采纳,获得20
刚刚
1秒前
PYR完成签到,获得积分20
1秒前
xiaoxiaoxiao发布了新的文献求助10
1秒前
1秒前
2秒前
wzm完成签到,获得积分10
2秒前
Wqhao发布了新的文献求助10
2秒前
spinor发布了新的文献求助10
2秒前
单薄雪巧完成签到,获得积分10
2秒前
Azure完成签到,获得积分10
2秒前
afeifei完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Khr1stINK发布了新的文献求助10
3秒前
鱼与发布了新的文献求助20
3秒前
3秒前
3秒前
搜集达人应助sunrise采纳,获得10
3秒前
4秒前
5秒前
5秒前
文文君发布了新的文献求助10
5秒前
无情的幻香完成签到,获得积分10
5秒前
5秒前
CCC发布了新的文献求助10
5秒前
5秒前
5秒前
随风发布了新的文献求助30
6秒前
SciGPT应助路纹婷采纳,获得10
6秒前
6秒前
于玕完成签到,获得积分10
6秒前
冷艳的寻冬完成签到,获得积分10
6秒前
PYR发布了新的文献求助10
7秒前
7秒前
acuter发布了新的文献求助10
7秒前
伶俐的以菱完成签到 ,获得积分10
7秒前
7秒前
michael发布了新的文献求助10
7秒前
五花肉完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210