Joint species distribution modelling with ther‐package Hmsc

协变量 背景(考古学) 航程(航空) 生态学 社区 计算机科学 环境数据 群落结构 环境生态位模型 物种分布 生物 机器学习 栖息地 工程类 古生物学 生态位 航空航天工程
作者
Gleb Tikhonov,Øystein H. Opedal,Nerea Abrego,Aleksi Lehikoinen,Melinda M. J. de Jonge,Jari Oksanen,Otso Ovaskainen
出处
期刊:Methods in Ecology and Evolution [Wiley]
卷期号:11 (3): 442-447 被引量:348
标识
DOI:10.1111/2041-210x.13345
摘要

Abstract Joint Species Distribution Modelling (JSDM) is becoming an increasingly popular statistical method for analysing data in community ecology. Hierarchical Modelling of Species Communities (HMSC) is a general and flexible framework for fitting JSDMs. HMSC allows the integration of community ecology data with data on environmental covariates, species traits, phylogenetic relationships and the spatio‐temporal context of the study, providing predictive insights into community assembly processes from non‐manipulative observational data of species communities. The full range of functionality of HMSC has remained restricted to Matlab users only. To make HMSC accessible to the wider community of ecologists, we introduce H msc 3.0, a user‐friendly r implementation. We illustrate the use of the package by applying H msc 3.0 to a range of case studies on real and simulated data. The real data consist of bird counts in a spatio‐temporally structured dataset, environmental covariates, species traits and phylogenetic relationships. Vignettes on simulated data involve single‐species models, models of small communities, models of large species communities and models for large spatial data. We demonstrate the estimation of species responses to environmental covariates and how these depend on species traits, as well as the estimation of residual species associations. We demonstrate how to construct and fit models with different types of random effects, how to examine MCMC convergence, how to examine the explanatory and predictive powers of the models, how to assess parameter estimates and how to make predictions. We further demonstrate how H msc 3.0 can be applied to normally distributed data, count data and presence–absence data. The package, along with the extended vignettes, makes JSDM fitting and post‐processing easily accessible to ecologists familiar with r .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵维雪完成签到,获得积分10
刚刚
蹦蹦完成签到,获得积分10
1秒前
十一完成签到 ,获得积分10
1秒前
汉堡包应助Aqua采纳,获得10
1秒前
2秒前
七秒鱼发布了新的文献求助10
2秒前
2秒前
ss应助小米粥采纳,获得10
2秒前
隐形曼青应助haha采纳,获得20
2秒前
3秒前
wanci应助guoguoguo采纳,获得30
3秒前
赵维雪发布了新的文献求助10
5秒前
爆米花应助lip采纳,获得10
5秒前
XXX完成签到,获得积分10
5秒前
zcs发布了新的文献求助10
6秒前
真实的青旋发布了新的文献求助100
7秒前
ngg发布了新的文献求助10
7秒前
7秒前
8秒前
韩涵完成签到 ,获得积分10
9秒前
10秒前
迷路的夏之完成签到,获得积分10
10秒前
10秒前
duoduo完成签到,获得积分10
10秒前
LOT完成签到,获得积分10
10秒前
10秒前
胖心怡完成签到,获得积分10
12秒前
高111发布了新的文献求助10
12秒前
科研通AI6应助调皮靖琪采纳,获得10
12秒前
张一迪发布了新的文献求助10
12秒前
烂漫破茧发布了新的文献求助10
13秒前
13秒前
13秒前
李爱国应助小孟要努力采纳,获得10
14秒前
Zzy完成签到,获得积分10
14秒前
ding应助完美的听芹采纳,获得10
14秒前
于越完成签到,获得积分20
14秒前
14秒前
小解完成签到 ,获得积分10
15秒前
赵浩楠发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470