热稳定性
嗜冷菌
分子动力学
酶动力学
突变体
化学
酶
α-淀粉酶
生物化学
淀粉酶
活动站点
计算化学
基因
作者
Qingbin Li,Yaru Yan,Xiaoqing Liu,Ziding Zhang,Jian Tian,Ningfeng Wu
标识
DOI:10.1016/j.ijbiomac.2019.10.004
摘要
The cold-adapted alpha-amylase (PHA) from Pseudoalteromonas haloplanktis is a psychrophilic enzyme which demonstrates high activity at low temperatures, but poor thermostability. Most of the method only employed the crystal structure to design the target protein. However, the trajectory of protein molecular dynamics (MD) simulation contained clues about the protein stability. In this study, we combined MD simulation and energy optimization methods to design mutations located at non-conserved residues. Two single point mutants (S255K, S340P) and one integrated mutant (S255K/S340P) enhanced thermostability without affecting the optimal catalytic activity. After incubation at 40 °C for 80 min, the residual activities of mutants S255K, S340P and S255K/S340P were 1.6-, 2.4-, and 2.6-fold greater than that of the wild type (WT). Additionally, the catalytic efficiency values (kcat/Km) of S255K, S340P, and S255K/S340P also increased 1.9-, 2.0-, and 2.7-fold when compared to WT.
科研通智能强力驱动
Strongly Powered by AbleSci AI