氧化还原
材料科学
氧化物
过渡金属
堆积
电极
化学物理
锂(药物)
无机化学
化学
纳米技术
催化作用
物理化学
冶金
医学
内分泌学
有机化学
生物化学
作者
Donggun Eum,Byung‐Hoon Kim,Sung Joo Kim,Hyeokjun Park,Jinpeng Wu,Sung‐Pyo Cho,Gabin Yoon,Myeong Hwan Lee,Sung‐Kyun Jung,Wanli Yang,Won Mo Seong,Kyojin Ku,Orapa Tamwattana,Sung Kwan Park,Insang Hwang,Kisuk Kang
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-01-20
卷期号:19 (4): 419-427
被引量:399
标识
DOI:10.1038/s41563-019-0572-4
摘要
Despite the high energy density of lithium-rich layered-oxide electrodes, their real-world implementation in batteries is hindered by the substantial voltage decay on cycling. This voltage decay is widely accepted to mainly originate from progressive structural rearrangements involving irreversible transition-metal migration. As prevention of this spontaneous cation migration has proven difficult, a paradigm shift toward management of its reversibility is needed. Herein, we demonstrate that the reversibility of the cation migration of lithium-rich nickel manganese oxides can be remarkably improved by altering the oxygen stacking sequences in the layered structure and thereby dramatically reducing the voltage decay. The preeminent intra-cycle reversibility of the cation migration is experimentally visualized, and first-principles calculations reveal that an O2-type structure restricts the movements of transition metals within the Li layer, which effectively streamlines the returning migration path of the transition metals. Furthermore, we propose that the enhanced reversibility mitigates the asymmetry of the anionic redox in conventional lithium-rich electrodes, promoting the high-potential anionic reduction, thereby reducing the subsequent voltage hysteresis. Our findings demonstrate that regulating the reversibility of the cation migration is a practical strategy to reduce voltage decay and hysteresis in lithium-rich layered materials. The use of high-energy-density lithium-rich layered-oxide electrodes in batteries is hindered by voltage decay on cycling. Improving the reversible cation migration by altering oxygen stacking is shown to suppress voltage decay and redox asymmetry in lithium-rich nickel manganese oxides.
科研通智能强力驱动
Strongly Powered by AbleSci AI