生物
相互作用体
胰岛素抵抗
疾病
内科学
内分泌学
医学
计算生物学
生物信息学
糖尿病
遗传学
基因
作者
Priyanka Sarkar,Kavitha Thirumurugan
出处
期刊:Gene
[Elsevier]
日期:2021-03-01
卷期号:771: 145340-145340
被引量:18
标识
DOI:10.1016/j.gene.2020.145340
摘要
Diabetic patients are always at a higher risk of ischemic diseases like coronary artery diseases. One such ischemic carotid artery disease is Moyamoya disease (MMD) associated with diabetes Type I and II, but the causality was unclear. Ring Finger Protein 213 (RNF213) is the major susceptible gene for MMD. To understand the association between diabetes mellitus and MMD we chose the major players from both of the anomalies: insulin and RNF213. But before establishing the role of RNF213 in the insulin-regulating pathway we had to understand the involvement of RNF213 within different biological systems. For this, we have adopted a preliminary computational approach to find the prominent interactions of RNF213. Our first objective was to construct an interactome for RNF213. We have analyzed several curated databases and adapted a list of RNF213 interacting partners to develop its interactome. Then to understand the involvement of this interactome in biological functions we have analyzed major biological pathways, biological processes, and prominent clusters related to this interactome through a computational approach. Then to develop a pathway that might give clues for RNF213 involvement in the insulin regulatory pathway we have validated the intercluster and intracluster predictions and identified a regulatory pathway for RNF213. RNF213 interactome was observed to be involved in adaptive immunity with 4 major clusters; one of the clusters involved TNFα. The immune system involves several pathways, and therefore at this point, we have chosen an event-based strategy to obtain an explicit target. Immunity is mediated by pro-inflammatory cytokines like TNFα. TNFα-mediated inflammation, obesity, and insulin resistance are associated. Therefore we chose to explore the role of RNF213 in TNFα-mediated inflammation in macrophages and inflammation-mediated insulin-resistance in adipocytes. We have observed an enhancement of RNF213 gene expression by LPS mediated pro-inflammatory stimuli and suppression by PPARγ-mediated anti-inflammatory, insulin-sensitizing stimuli in macrophages, and also in adipocytes. Administration of the pro-inflammatory cytokine TNFα was able to impede the reduction in RNF213 expression during adipogenesis and this effect was observed to be mediated by PTP1B. Inactivation of PTP1B abolished RNF213 expression which in turn enhanced the adipogenesis process through enhanced PPARγ. Constitutive expression of RNF213 suppressed the adipocyte differentiation by the inhibition of PPARγ. We could show the regulation of RNF213 by TNFα/PTP1B pathway and PPARγ. The constitutive expression of RNF213 during adipogenesis appears to be an adipostatic measure that obese patients acquire to inhibit further adipogenesis. This is verified in silico by analyzing the gene expression data obtained from the Gene Expression Omnibus database, which showed a higher expression of RNF213 in adipose tissue samples of obese people. Overall this study gives new insights into the TNFα-mediated pathway in adipogenesis and suggests the role of RNF213 in adipogenesis via this pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI