A novel, co-located EMG-FMG-sensing wearable armband for hand gesture recognition

可穿戴计算机 肌电图 手势 手势识别 计算机科学 隐马尔可夫模型 模式 模态(人机交互) 语音识别 人机交互 模式识别(心理学) 人工智能 物理医学与康复 医学 嵌入式系统 社会学 社会科学
作者
Shuo Jiang,Qinghua Gao,Huaiyang Liu,Peter B. Shull
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:301: 111738-111738 被引量:114
标识
DOI:10.1016/j.sna.2019.111738
摘要

Gestures play an important role in human-computer interaction, providing a potentially intuitive way to bridge the gap between human intention and the control of smart devices. Electromyography (EMG) and force myography (FMG) are two commonly-adopted wearable sensing modalities for gesture recognition. Previous research approaches utilize only a single modality (EMG or FMG) at any given muscle location, thus limiting the amount of potentially-useful biological hand gesture information. We thus propose a novel co-located approach (EMG and FMG) for capturing both sensing modalities, simultaneously, at the same location. We developed a novel hand gesture recognition armband consisting of 8 co-located EMG-FMG sensing units (size and weight of each EMG-FMG sensing unit was 11 × 13 × 6 mm and 0.90 g, respectively). Five subjects performed a hand gesture recognition experiment for American Sign Language digits 0–9 while wearing the co-located EMG-FMG armband on the forearm. Hand gesture classification accuracy was 81.5 % for EMG only, 80.6 % FMG only, and 91.6 % for co-located EMG-FMG. These results suggest that co-located EMG-FMG may lead to higher hand gesture classification accuracy than sensing approaches using either EMG or FMG in isolation. To the best of our knowledge, this is the first prototype that measures EMG and FMG simultaneously at the same muscle location for hand gesture recognition. Implications of this work could positively impact a variety of muscle activity monitoring research applications including biomechanics modeling, prosthesis control, and gesture recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助现实的白昼采纳,获得10
刚刚
1秒前
1秒前
风花雪月完成签到,获得积分10
3秒前
3秒前
小二郎应助聪明的岂愈采纳,获得10
4秒前
机智的夜云完成签到,获得积分10
4秒前
正直丹寒发布了新的文献求助10
5秒前
wy完成签到,获得积分10
6秒前
6秒前
Judy发布了新的文献求助10
7秒前
Ttisme驳回了李健应助
8秒前
mumahuangshu完成签到,获得积分10
8秒前
9秒前
10秒前
愉快的真应助endoscopy采纳,获得10
11秒前
12秒前
pluto应助Judy采纳,获得10
13秒前
李健的小迷弟应助子陇采纳,获得10
13秒前
efre发布了新的文献求助10
14秒前
啊哈哈哈哈完成签到,获得积分10
16秒前
慕青应助密斯锌硒采纳,获得10
16秒前
lian发布了新的文献求助10
16秒前
17秒前
年轻千愁完成签到 ,获得积分10
18秒前
18秒前
19秒前
Judy完成签到,获得积分10
19秒前
leaves发布了新的文献求助10
19秒前
20秒前
24秒前
wei完成签到,获得积分10
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Gergeo应助科研通管家采纳,获得20
26秒前
26秒前
Dr_Tian完成签到,获得积分20
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102764
求助须知:如何正确求助?哪些是违规求助? 2754003
关于积分的说明 7626148
捐赠科研通 2406815
什么是DOI,文献DOI怎么找? 1277007
科研通“疑难数据库(出版商)”最低求助积分说明 617041
版权声明 599103