Hydration-induced reversible deformation of biological materials

膨胀压力 材料科学 蜘蛛丝 仿生学 变形(气象学) 生物高聚物 干燥 丝绸 生物物理学 纳米技术 化学 复合材料 植物 生物 聚合物
作者
Haocheng Quan,David Kisailus,Marc A. Meyers
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:6 (3): 264-283 被引量:86
标识
DOI:10.1038/s41578-020-00251-2
摘要

The influx and efflux of water in biological structures actuates reversible deformation and recovery processes that are crucial for mechanical functions in plants and animals. These processes utilize various mechanochemical mechanisms: swelling directed by the arrangement of cellulosic microfibrils in a bilayer construct, which generates different deformation patterns; lignification gradients; hierarchical foam-like inner structures, some of which also include swelling by hygroscopic cellulose inner cell layer; turgor pressure, which is activated by osmosis and acts at the cellular level, generating reversible motions. In this Review, we present representatives of each of these four mechanisms: pine cones, wheat awns, the twisted opening of Bauhinia pods and the seed of the stork’s bill; the resurrection plant; ice plant seed capsules and carrotwood seed pod; the wilting and redressing of plant stems. Natural polymeric materials produced by animals can also exhibit hydration-driven shape and strength recovery: bird feathers and hair are prime examples. Spider silk — a non-keratinous biopolymer — also exhibits humidity-driven reversible deformation. After describing these animal-based mechanisms, we outline bioinspired applications to actuate multifunctional and biocompatible smart materials, and indicate future directions of research with potential for new bioinspired designs. The influx and efflux of water in biological structures leads to reversible deformation, which has important functions in plants (for example, in seed protection and dispersal) and animals (for example, in the recovery of the strength and shape of feathers, and for reversible changes in silk and hair). Here the authors review the main hydration-induced deformation mechanisms and highlight applications inspired by these processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助小汤采纳,获得10
1秒前
思源应助稳重的山柏采纳,获得10
3秒前
哈密哈密完成签到,获得积分10
3秒前
代小葵发布了新的文献求助10
5秒前
5秒前
5秒前
顺利的冰旋完成签到 ,获得积分10
5秒前
水獭发布了新的文献求助10
6秒前
6秒前
7秒前
搜集达人应助ponny2001采纳,获得10
7秒前
杳鸢应助自然秋双采纳,获得10
9秒前
11秒前
12秒前
卓梨发布了新的文献求助10
12秒前
小汤发布了新的文献求助10
13秒前
15秒前
yin应助薛变霞采纳,获得10
15秒前
wang完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
19秒前
瞿选葵发布了新的文献求助10
21秒前
22秒前
小杨完成签到,获得积分10
22秒前
23秒前
24秒前
爆米花发布了新的文献求助10
24秒前
llxgjx完成签到,获得积分10
25秒前
27秒前
Akim应助吃葡萄不吐葡萄皮采纳,获得30
27秒前
28秒前
30秒前
30秒前
充电宝应助执念采纳,获得10
30秒前
chengmin完成签到 ,获得积分10
31秒前
小蘑菇应助代小葵采纳,获得10
31秒前
ASD123发布了新的文献求助10
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693