假电容
材料科学
超级电容器
化学工程
水热碳化
热液循环
金属
电化学
氧气
碳纤维
纳米技术
电极
化学
复合材料
碳化
冶金
有机化学
物理化学
工程类
复合数
扫描电子显微镜
作者
Shaobo Liu,Kang Liu,Kejun Chen,Junwei Fu,Huangjingwei Li,Pengda An,Hongmei Li,Chuankun Jia,Haipeng Xie,Hui Liu,Junhua Hu,Hao Pan,Xusheng Zheng,Xiaoliang Liu,Xiaoming Wang,Min Liu
标识
DOI:10.1016/j.jpowsour.2019.227507
摘要
Abstract Coupling electrode composed of carbonaceous materials and metal oxides can effectively raise pseudocapacitance; however, due to the weak interaction between carbonaceous materials and metal oxides, structural control of the resultant coupling electrode remains a great challenge. Herein, surface-modified carbon cloth (SMCC), which is obtained by carbonizing the hydrothermal products of cetyltrimethylammonium bromide and glucose solution on carbon cloth (CC), is employed to regulate in-situ growth of δ-MnO2 in a KMnO4 and H2SO4 solution at hydrothermal condition. Structural characterizations indicate that surface modification renders SMCC to possess an oxygen-species-rich superhydrophilic surface, which in turn enables the supported δ-MnO2 to form the dense ultrathin nanosheets and abundant oxygen-vacancy (Vo) structure. Electrochemical tests demonstrate that the MnO2/SMCC can exhibit a specific capacitance of 508 F g−1 (792.5 C g−1) at 1 A g−1 under working potential range from −0.3 to 1.26 VAg/AgCl in three-electrode system, outperforming previously-reported δ-MnO2-based materials. Further, the detailed structural investigations identify that the oxygen species on SMCC dominate the generation of Vo in δ-MnO2 by reducing thickness and interface bonding, and the Vo in δ-MnO2 improves the pesudocapacitance by promoting the transition of Mn2+ to Mn4+.
科研通智能强力驱动
Strongly Powered by AbleSci AI