材料科学
钙钛矿(结构)
光电子学
发光二极管
量子效率
图层(电子)
二极管
化学工程
纳米技术
工程类
作者
Ruiying Li,Lei Cai,Yatao Zou,Hao Xu,Yeshu Tan,Yusheng Wang,Junnan Li,Xuechun Wang,LI Ya,Yuanshuai Qin,Dong Liang,Tao Song,Baoquan Sun
标识
DOI:10.1021/acsami.0c07514
摘要
Unbalanced charge injection is one of the major issues that hampers the efficiency of perovskite light-emitting diodes (PeLEDs). Through engineering the device structure with multiple hole transport layers (HTLs), i.e., poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)diphenylamine) (TFB)/poly(9-vinylcarbazole) (PVK) and nickel oxide (NiOx)/TFB/PVK, efficient PeLED devices have been successfully demonstrated. However, in a typical solution-processed PeLED with multiple HTLs, the underlying conjugated HTL could be easily redissolved by the ink of the following one, which not only dramatically deteriorates the electrical property of HTLs but also influences the quality of the top perovskite films. In this work, through inserting a thin atomic layer-deposited aluminum oxide (Al2O3) layer between HTLs and the perovskite layer, an improved interfacial contact can be achieved, which enables us to obtain perovskite films with enhanced characteristics and balanced charge injection in the resultant PeLEDs. In addition, because of the proper refractive index (r), the presence of the Al2O3 layer also favors the light out-coupling of PeLEDs. As a result, we fabricate green PeLEDs with good repeatability and external quantum efficiency of 17.0%, which is approximately 60% higher than that of the control device without Al2O3. Our work provides a promising avenue to enhance interfacial contact between the charge transport layer and perovskite for efficient perovskite-based optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI