Pedestrian Trajectory Prediction using Context-Augmented Transformer Networks

行人 弹道 变压器 计算机科学 背景(考古学) 人工智能 运输工程 地理 工程类 电气工程 物理 电压 天文 考古
作者
Khaled Saleh
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2012.01757
摘要

Forecasting the trajectory of pedestrians in shared urban traffic environments is still considered one of the challenging problems facing the development of autonomous vehicles (AVs). In the literature, this problem is often tackled using recurrent neural networks (RNNs). Despite the powerful capabilities of RNNs in capturing the temporal dependency in the pedestrians' motion trajectories, they were argued to be challenged when dealing with longer sequential data. Thus, in this work, we are introducing a framework based on the transformer networks that were shown recently to be more efficient and outperformed RNNs in many sequential-based tasks. We relied on a fusion of the past positional information, agent interactions information and scene physical semantics information as an input to our framework in order to provide a robust trajectory prediction of pedestrians. We have evaluated our framework on two real-life datasets of pedestrians in shared urban traffic environments and it has outperformed the compared baseline approaches in both short-term and long-term prediction horizons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助Nn采纳,获得10
刚刚
甜甜球发布了新的文献求助10
刚刚
Three完成签到,获得积分10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
tiezhu应助科研通管家采纳,获得10
1秒前
1秒前
夜月残阳应助科研通管家采纳,获得10
1秒前
延陵君应助科研通管家采纳,获得30
1秒前
蛋黄酥酥应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
衷医课代表完成签到,获得积分10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
夜月残阳应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
延陵君应助科研通管家采纳,获得30
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
夜月残阳应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助等待黎明采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
彭于晏应助Peng采纳,获得10
2秒前
2秒前
旋123完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
小马甲应助宋叻叻采纳,获得10
2秒前
津津乐道完成签到,获得积分10
3秒前
RBT发布了新的文献求助10
3秒前
夜願发布了新的文献求助10
4秒前
汉堡包应助nikiniki采纳,获得10
4秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665044
求助须知:如何正确求助?哪些是违规求助? 4874526
关于积分的说明 15111251
捐赠科研通 4824178
什么是DOI,文献DOI怎么找? 2582656
邀请新用户注册赠送积分活动 1536612
关于科研通互助平台的介绍 1495236