Shared human–robot proportional control of a dexterous myoelectric prosthesis

抓住 可用性 机器人 稳健性(进化) 自动化 人机交互 控制器(灌溉) 计算机科学 对象(语法) 模拟 计算机视觉 工程类 人工智能 基因 生物 机械工程 生物化学 化学 程序设计语言 农学
作者
Katie Z. Zhuang,Nicolas Le Sommer,Vincent Mendez,Saurav Aryan,Emanuele Formento,Edoardo D’Anna,Fiorenzo Artoni,Francesco Maria Petrini,Giuseppe Granata,Giovanni Cannaviello,Wassim Raffoul,Aude Billard,Silvestro Micera
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (9): 400-411 被引量:97
标识
DOI:10.1038/s42256-019-0093-5
摘要

Myoelectric prostheses allow users to recover lost functionality by controlling a robotic device with their remaining muscle activity. Such commercial devices can give users a high level of autonomy, but still do not approach the dexterity of the intact human hand. Here we present a method to control a robotic hand, shared between user intention and robotic automation. The algorithm allows user-controlled movements when high dexterity is desired, but also assisted grasping when robustness is paramount. This combination of features is currently lacking in commercial prostheses and can greatly improve prosthesis usability. First, we design and test a myoelectric proportional controller that can predict multiple joint angles simultaneously and with high accuracy. We then implement online control with both able-bodied and amputee subjects. Finally, we present a shared control scheme in which robotic automation aids in object grasping by maximizing the contact area between the hand and the object, greatly increasing grasp success and object hold times in both a virtual and a physical environment. Our results present a viable method of prosthesis control implemented in real time, for reliable articulation of multiple simultaneous degrees of freedom. A combination of engineering advances shows promise for myoelectric prosthetic hands that are controlled by a user’s remaining muscle activity. Fine finger movements are decoded from surface electromyograms with machine learning algorithms and this is combined with a robotic controller that is active only during object grasping to assist in maximizing contact. This shared control scheme allows user-controlled movements when high dexterity is desired, but also assisted grasping when robustness is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Ade采纳,获得10
刚刚
李爱国应助呆呆小猪采纳,获得10
1秒前
1秒前
熊博士完成签到 ,获得积分10
5秒前
威武烨磊完成签到,获得积分10
5秒前
霏子发布了新的文献求助10
6秒前
6秒前
9秒前
Jasper应助莫知采纳,获得10
9秒前
哈哈完成签到 ,获得积分10
10秒前
12秒前
12秒前
13秒前
可爱的函函应助鼓励男孩采纳,获得10
13秒前
来天才发布了新的文献求助10
13秒前
斯文败类应助齐桓采纳,获得10
13秒前
14秒前
龚井发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
23秒前
莫知发布了新的文献求助10
23秒前
小张完成签到,获得积分10
24秒前
加冰的哈密瓜完成签到,获得积分10
24秒前
25秒前
25秒前
鼓励男孩发布了新的文献求助10
26秒前
huyulele完成签到,获得积分10
26秒前
Brucewang1127完成签到,获得积分10
26秒前
阿航发布了新的文献求助10
27秒前
27秒前
景景好完成签到,获得积分10
28秒前
今后应助斑马爸爸采纳,获得10
28秒前
十七完成签到,获得积分10
28秒前
29秒前
Endlessway应助17采纳,获得10
30秒前
齐桓发布了新的文献求助10
30秒前
wuwuwuquququ发布了新的文献求助10
30秒前
大地上的鱼应助Shawn采纳,获得10
32秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218048
求助须知:如何正确求助?哪些是违规求助? 2867304
关于积分的说明 8155707
捐赠科研通 2534228
什么是DOI,文献DOI怎么找? 1366805
科研通“疑难数据库(出版商)”最低求助积分说明 644866
邀请新用户注册赠送积分活动 617911