Shared human–robot proportional control of a dexterous myoelectric prosthesis

控制(管理) 机器人 假肢 计算机科学 模拟 物理医学与康复 医学 人工智能
作者
Katie Zhuang,Nicolas Le Sommer,Vincent Mendez,Saurav Aryan,Emanuele Formento,Edoardo D’Anna,Fiorenzo Artoni,Francesco M. Petrini,Giuseppe Granata,Giovanni Cannaviello,Wassim Raffoul,Aude Billard,Silvestro Micera
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:1 (9): 400-411 被引量:129
标识
DOI:10.1038/s42256-019-0093-5
摘要

Myoelectric prostheses allow users to recover lost functionality by controlling a robotic device with their remaining muscle activity. Such commercial devices can give users a high level of autonomy, but still do not approach the dexterity of the intact human hand. Here we present a method to control a robotic hand, shared between user intention and robotic automation. The algorithm allows user-controlled movements when high dexterity is desired, but also assisted grasping when robustness is paramount. This combination of features is currently lacking in commercial prostheses and can greatly improve prosthesis usability. First, we design and test a myoelectric proportional controller that can predict multiple joint angles simultaneously and with high accuracy. We then implement online control with both able-bodied and amputee subjects. Finally, we present a shared control scheme in which robotic automation aids in object grasping by maximizing the contact area between the hand and the object, greatly increasing grasp success and object hold times in both a virtual and a physical environment. Our results present a viable method of prosthesis control implemented in real time, for reliable articulation of multiple simultaneous degrees of freedom. A combination of engineering advances shows promise for myoelectric prosthetic hands that are controlled by a user’s remaining muscle activity. Fine finger movements are decoded from surface electromyograms with machine learning algorithms and this is combined with a robotic controller that is active only during object grasping to assist in maximizing contact. This shared control scheme allows user-controlled movements when high dexterity is desired, but also assisted grasping when robustness is required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ykiiii发布了新的文献求助10
刚刚
司徒无剑完成签到,获得积分10
刚刚
刚刚
1秒前
ABCDE发布了新的文献求助30
1秒前
打打应助哈温采纳,获得30
1秒前
wy.he应助同花顺采纳,获得10
1秒前
zmy完成签到,获得积分10
1秒前
折耳根拌香菜完成签到,获得积分10
1秒前
陈陈发布了新的文献求助10
1秒前
猪大胖发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
丘比特应助楼芷天采纳,获得10
1秒前
nannan发布了新的文献求助10
1秒前
1秒前
2秒前
黄不愁发布了新的文献求助10
3秒前
三岁半完成签到,获得积分10
3秒前
无花果应助冷傲博采纳,获得10
3秒前
苗松发布了新的文献求助10
3秒前
科研通AI6应助哈哈哈哈采纳,获得10
4秒前
4秒前
大个应助酸色黑樱桃采纳,获得30
4秒前
双儿发布了新的文献求助10
4秒前
ask发布了新的文献求助10
5秒前
xiaoxiao发布了新的文献求助10
5秒前
温暖冰颜发布了新的文献求助10
5秒前
5秒前
6秒前
何永森发布了新的文献求助10
6秒前
ly完成签到,获得积分10
6秒前
6秒前
酷炫师完成签到,获得积分10
7秒前
lxt完成签到 ,获得积分10
8秒前
8秒前
采蘑菇发布了新的文献求助10
9秒前
10秒前
10秒前
孙志豪完成签到,获得积分10
10秒前
糖不甜了完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188