Constraint learning based gradient boosting trees

Boosting(机器学习) 梯度升压 计算机科学 机器学习 人工智能 回归 约束(计算机辅助设计) 约束学习 数学 约束满足 随机森林 统计 局部一致性 几何学 概率逻辑
作者
A Israeli,Lior Rokach,Asaf Shabtai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:128: 287-300 被引量:15
标识
DOI:10.1016/j.eswa.2019.03.011
摘要

Predictive regression models aim to find the most accurate solution to a given problem, often without any constraints related to the model's predicted values. Such constraints have been used in prior research where they have been applied to a subpopulation within the training dataset which is of greater interest and importance. In this research we introduce a new setting of regression problems, in which each instance can be assigned a different constraint, defined based on the value of the target (predicted) attribute. The new use of constraints is taken into account and incorporated into the learning process, and is also considered when evaluating the induced model. We propose two algorithms which are modifications to the regression boosting method. There are two advantages of the proposed algorithms: they are not dependent on the base learner used during the learning process, and they can be adopted by any boosting technique. We implemented the algorithms by modifying the gradient boosting trees (GBT) model, and we also introduced two measures for evaluating the models that were trained to solve the constraint problems. We compared the proposed algorithms to three baseline algorithms using four real-life datasets. Due to the algorithms' focus on satisfying the constraints, in most cases the results showed significant improvement in the constraint-related measures, with just a minimal effect on the general prediction error. The main impact of the proposed approach is in its ability to derive a model with a higher level of assurance for specific cases of interest (i.e., the constrained cases). This is extremely important and has great significance in various use cases and expert and intelligent systems, particularly critical systems, such as critical healthcare systems (e.g., when predicting blood pressure or blood sugar level), safety systems (e.g., when aiming to estimate the distance of cars or airplanes from other objects), or critical industrial systems (e.g., require to estimate their usability along time). In each of these cases, there is a subpopulation of all instances that is of greater interest to the expert or system, and the sensitivity of the model's error changes according to the real value of the predicted feature. For example, for a subpopulation of patients (e.g., patients under the age of eight, or patients known to be at risk), physicians often require a sensitive model that accurately predicts blood pressure values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助Mor采纳,获得10
2秒前
2秒前
bkagyin应助ZZZZ采纳,获得10
2秒前
CipherSage应助种花家的狗狗采纳,获得10
3秒前
3秒前
顺心绮兰发布了新的文献求助10
3秒前
xianjingli完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
漂亮送终完成签到,获得积分10
7秒前
8秒前
9秒前
漂亮送终发布了新的文献求助10
10秒前
Wtf关闭了Wtf文献求助
10秒前
11秒前
123完成签到,获得积分20
11秒前
wangyun完成签到,获得积分10
11秒前
12秒前
FashionBoy应助雪白小猫咪采纳,获得10
12秒前
nanimonai7完成签到,获得积分10
12秒前
SCF完成签到,获得积分20
13秒前
领导范儿应助huanghao采纳,获得10
13秒前
14秒前
爆米花应助heli采纳,获得10
14秒前
FashionBoy应助曹姗采纳,获得10
14秒前
14秒前
ZZZZ发布了新的文献求助10
16秒前
HZY完成签到,获得积分10
16秒前
坚强莺发布了新的文献求助10
16秒前
16秒前
彭于晏应助77777采纳,获得10
16秒前
orixero应助volzzz采纳,获得10
16秒前
elena发布了新的文献求助10
17秒前
17秒前
dopamine完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866