Constraint learning based gradient boosting trees

Boosting(机器学习) 梯度升压 计算机科学 机器学习 人工智能 回归 约束(计算机辅助设计) 约束学习 数学 约束满足 随机森林 统计 局部一致性 几何学 概率逻辑
作者
A Israeli,Lior Rokach,Asaf Shabtai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:128: 287-300 被引量:15
标识
DOI:10.1016/j.eswa.2019.03.011
摘要

Predictive regression models aim to find the most accurate solution to a given problem, often without any constraints related to the model's predicted values. Such constraints have been used in prior research where they have been applied to a subpopulation within the training dataset which is of greater interest and importance. In this research we introduce a new setting of regression problems, in which each instance can be assigned a different constraint, defined based on the value of the target (predicted) attribute. The new use of constraints is taken into account and incorporated into the learning process, and is also considered when evaluating the induced model. We propose two algorithms which are modifications to the regression boosting method. There are two advantages of the proposed algorithms: they are not dependent on the base learner used during the learning process, and they can be adopted by any boosting technique. We implemented the algorithms by modifying the gradient boosting trees (GBT) model, and we also introduced two measures for evaluating the models that were trained to solve the constraint problems. We compared the proposed algorithms to three baseline algorithms using four real-life datasets. Due to the algorithms' focus on satisfying the constraints, in most cases the results showed significant improvement in the constraint-related measures, with just a minimal effect on the general prediction error. The main impact of the proposed approach is in its ability to derive a model with a higher level of assurance for specific cases of interest (i.e., the constrained cases). This is extremely important and has great significance in various use cases and expert and intelligent systems, particularly critical systems, such as critical healthcare systems (e.g., when predicting blood pressure or blood sugar level), safety systems (e.g., when aiming to estimate the distance of cars or airplanes from other objects), or critical industrial systems (e.g., require to estimate their usability along time). In each of these cases, there is a subpopulation of all instances that is of greater interest to the expert or system, and the sensitivity of the model's error changes according to the real value of the predicted feature. For example, for a subpopulation of patients (e.g., patients under the age of eight, or patients known to be at risk), physicians often require a sensitive model that accurately predicts blood pressure values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
pharrah发布了新的文献求助10
2秒前
2秒前
4秒前
拼搏荧发布了新的文献求助10
4秒前
调皮的沛萍完成签到,获得积分20
4秒前
23lk发布了新的文献求助10
4秒前
huofuman发布了新的文献求助10
4秒前
沧笙踏歌发布了新的文献求助10
5秒前
Chushi完成签到,获得积分10
6秒前
pharrah完成签到,获得积分10
7秒前
zhusihua发布了新的文献求助10
7秒前
8秒前
8秒前
丘比特应助Gyro采纳,获得10
9秒前
9秒前
西瓜汽水完成签到,获得积分10
10秒前
在水一方应助LHW采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
小瓢虫发布了新的文献求助10
12秒前
夜柒七完成签到,获得积分10
13秒前
chaoschen完成签到,获得积分10
15秒前
羫孔发布了新的文献求助10
15秒前
Steven发布了新的文献求助10
16秒前
木木发布了新的文献求助30
16秒前
key发布了新的文献求助10
16秒前
zhaoyuwei发布了新的文献求助10
18秒前
CipherSage应助温乘云采纳,获得10
18秒前
20秒前
dailin发布了新的文献求助10
21秒前
22秒前
无糖零脂完成签到,获得积分10
22秒前
老实的画板关注了科研通微信公众号
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141