Corridor level cooperative trajectory optimization with connected and automated vehicles

交叉口(航空) 灵活性(工程) 弹道 计算机科学 吞吐量 运动规划 时间范围 整数规划 路径(计算) 线性规划 避碰 实时计算 控制(管理) 控制理论(社会学) 数学优化 模拟 碰撞 工程类 运输工程 数学 算法 人工智能 计算机网络 计算机安全 机器人 统计 物理 天文 无线 电信
作者
Chunhui Yu,Yiheng Feng,Henry Liu,Wanjing Ma,Chunhui Yu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:105: 405-421 被引量:72
标识
DOI:10.1016/j.trc.2019.06.002
摘要

Trajectory planning for connected and automated vehicles (CAVs) has been studied at both isolated intersections and multiple intersections under the fully CAV environment in the literature. However, most of the existing studies only model limited interactions of vehicle trajectories at the microscopic level, without considering the coordination between vehicle trajectories. This study proposes a mixed-integer linear programming (MILP) model to cooperatively optimize the trajectories of CAVs along a corridor for system optimality. The car-following and lane-changing behaviors of each vehicle along the entire path are optimized together. The trajectories of all vehicles along the corridor are coordinated for system optimality in terms of total vehicle delay. All vehicle movements (i.e., left-turning, through, and right-turning) are considered at each intersection. The ingress lanes are not associated with any specific movement and can be used for all vehicle movements, which provides much more flexibility. Vehicles are controlled to pass through intersections without traffic signals. Due to varying traffic conditions, the planning horizon is adaptively adjusted in the implementation procedure of the proposed model to find a balance between solution feasibility and computational burden. Numerical studies validate the advantages of the proposed CAV-based control over the coordinated fixed-time control at different demand levels in terms of vehicle delay and throughput. The analyses of the safety time gaps for collision avoidance within intersection areas show the promising benefits of traffic management under the fully CAV environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brocade发布了新的文献求助10
1秒前
1秒前
长乐完成签到,获得积分10
1秒前
maox1aoxin应助甫_F采纳,获得50
2秒前
明亮的冬天应助甫_F采纳,获得50
2秒前
安静远航发布了新的文献求助10
3秒前
大个应助CCC采纳,获得30
6秒前
双黄应助科研通管家采纳,获得20
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
哆唻应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得30
8秒前
8R60d8应助科研通管家采纳,获得10
9秒前
cocolu应助科研通管家采纳,获得10
9秒前
嗯哼应助bias采纳,获得20
9秒前
orixero应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
清平道人应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
良辰应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
11秒前
顾矜应助安静远航采纳,获得10
12秒前
优美熠悦发布了新的文献求助10
14秒前
哈娜桑de悦完成签到,获得积分10
17秒前
19秒前
19秒前
烟花应助dongdoctor采纳,获得10
23秒前
RAY发布了新的文献求助10
23秒前
tczw667完成签到,获得积分10
25秒前
ppf完成签到,获得积分20
27秒前
应然忆完成签到 ,获得积分10
28秒前
29秒前
29秒前
ppf发布了新的文献求助10
31秒前
33秒前
峰1992发布了新的文献求助10
33秒前
孝顺的蛋挞完成签到,获得积分10
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314019
求助须知:如何正确求助?哪些是违规求助? 2946434
关于积分的说明 8530073
捐赠科研通 2622079
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650792