Comparison of the MuSyQ and MODIS Collection 6 Land Surface Temperature Products Over Barren Surfaces in the Heihe River Basin, China

发射率 环境科学 中分辨率成像光谱仪 遥感 先进星载热发射反射辐射计 白天 均方误差 光谱辐射计 气象学 大气科学 卫星 反射率 地质学 数字高程模型 数学 地理 统计 物理 工程类 光学 航空航天工程
作者
Hua Li,Qinhuo Liu,Yikun Yang,Ruibo Li,Heshun Wang,Biao Cao,Zunjian Bian,Tian Hu,Yongming Du,Lin Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (10): 8081-8094 被引量:45
标识
DOI:10.1109/tgrs.2019.2918259
摘要

In this study, to improve the accuracy of land surface temperature (LST) products over barren surfaces, we present an operational algorithm to retrieve the LST from Moderate-Resolution Imaging Spectroradiometer (MODIS) thermal infrared data using physically retrieved emissivity products. The LST algorithm involved two steps. First, the emissivity in the two MODIS split-window (SW) channels was estimated using the vegetation cover method, with the bare soil component emissivity derived from the ASTER global emissivity data set. Then, the LST was retrieved using a modified generalized SW algorithm. This algorithm was implemented in the MUlti-source data SYnergized Quantitative (MuSyQ) remote sensing product system. The MuSyQ MODIS LST product and the Collection 6 MODIS LST product (MxD11_L2) were compared and validated using ground measurements collected from four barren surface sites in Northwest China during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment from June 2012 to December 2015. In total, 2268 and 2715 clear-sky samples were used in the validation for Terra and Aqua, respectively. The evaluation results indicate that the MuSyQ LST products provide better accuracy than the C6 MxD11 product during both daytime and nighttime at all four sites. For the daytime results, the LST is underestimated by the C6 MxD11 products at all four sites, with a mean bias of -1.78 and -2.86 K and a mean root-mean-square error (RMSE) of 3.16 and 3.94 K for Terra and Aqua, respectively, whereas the mean biases of the MuSyQ LST products are within 1 K, with a mean bias of -0.26 and -1.03 K and a mean RMSE of 2.45 and 2.71 K for Terra and Aqua, respectively. For the nighttime results, the LST is also underestimated by the C6 MxD11 products at all four sites, with a mean bias of -1.60 and -1.26 K and a mean RMSE of 1.93 and 1.60 K for Terra and Aqua, respectively, whereas the mean biases of the MuSyQ LST products are 0.16 and 0.58 K and the mean RMSEs are 1.12 and 1.25 K for Terra and Aqua, respectively. The results indicate that the underestimation of the C6 MxD11 LST product at all four sites mainly results from the overestimation of the emissivities in MODIS bands 31 and 32. This study demonstrates that physically retrieved emissivity products are a useful source for LST retrieval over barren surfaces and can be used to improve the accuracy of global LST products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIU完成签到 ,获得积分10
刚刚
义气小白菜完成签到 ,获得积分10
1秒前
sunshine完成签到,获得积分10
1秒前
1秒前
夷陵老祖胃无限完成签到,获得积分10
2秒前
科研通AI5应助windy7采纳,获得10
3秒前
隐形曼青应助wenxiang采纳,获得10
3秒前
luwenxuan完成签到,获得积分10
4秒前
平常的雁凡完成签到,获得积分10
5秒前
松鼠15111完成签到,获得积分10
7秒前
rio完成签到 ,获得积分10
7秒前
drizzling完成签到,获得积分10
8秒前
chen完成签到,获得积分10
10秒前
高贵的晓筠完成签到 ,获得积分10
10秒前
leo完成签到 ,获得积分10
10秒前
11秒前
11秒前
老迟到的幼枫完成签到,获得积分10
14秒前
研友_ZzrWKZ完成签到 ,获得积分10
14秒前
Once完成签到,获得积分10
16秒前
windy7发布了新的文献求助10
16秒前
可爱的函函应助zzb采纳,获得10
16秒前
星海殇完成签到 ,获得积分0
17秒前
19秒前
养猪大户完成签到 ,获得积分10
19秒前
糖豆子完成签到,获得积分10
20秒前
求助应助Edward采纳,获得10
20秒前
机智念芹完成签到 ,获得积分10
20秒前
longmad完成签到,获得积分10
20秒前
ZS完成签到,获得积分10
20秒前
龙舞星完成签到,获得积分10
21秒前
儒雅飞飞完成签到 ,获得积分10
22秒前
小胖子完成签到 ,获得积分10
22秒前
紫金之巅完成签到 ,获得积分10
23秒前
Haucicy完成签到 ,获得积分10
24秒前
平淡的翅膀完成签到 ,获得积分10
24秒前
24秒前
yycc完成签到,获得积分10
24秒前
加油杨完成签到 ,获得积分10
25秒前
健壮的花瓣完成签到 ,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580551
求助须知:如何正确求助?哪些是违规求助? 3150024
关于积分的说明 9479749
捐赠科研通 2851567
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734264
科研通“疑难数据库(出版商)”最低求助积分说明 720579