生物传感器
DNA
纳米材料
检出限
线性范围
生物分子
环介导等温扩增
连锁反应
化学
纳米技术
材料科学
DNA–DNA杂交
杂交探针
计算生物学
组合化学
生物
生物化学
色谱法
光化学
作者
Lin Zhou,Yang Wang,Yang Cheng,Huan Xu,Jie Luo,Wenqing Zhang,Xiaoqi Tang,Sha Yang,Weiling Fu,Kai Chang,Ming Chen
标识
DOI:10.1016/j.bios.2018.11.028
摘要
DNA nanomaterials have been widely used in bioassays due to their promising properties for sensitive and specific detection of biomolecules. Herein, a label-free electrochemical method was developed for quantitative detection of microRNAs by integrating Y-shaped DNA (Y-DNA) structures with non-linear hybridization chain reaction (non-linear HCR). The Y-DNA structures consisting of three sequences (Y1, Y2 and Y3) serve as stable and specific probes for recognizing target miRNAs. In the presence of target miRNA, competitive hybridization occurs between miRNA and Y-DNA, resulting in the release of Y3 and the disintegration of the Y-DNA structure. The triggers, which were blocked by Y3 previously, were exposed and initiated the non-linear HCR. Remarkable electrochemical signal changes were produced after the isothermal amplification reaction. Therefore, the proposed biosensor achieved sensitive detection of microRNAs (miRNAs). Under optimal conditions, the limit of detection (LOD) was reduced to 0.3334 fM and linear range was from 1 fM to 10 pM. The special design of Y-DNA helped the biosensor obtain the ability to distinguish between single base mutations. What's more, this biosensor was capable of detecting miRNAs in clinical serum samples. We hope that this developed biosensor would provide a potential application for DNA nanomaterials in the field of microRNAs detection and inspire more interests in the development of DNA nanomaterial biosensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI