Na-doped α-Bi2O3 with a hierarchical flower-like shape was successfully prepared via a facile hydrothermal reaction. The samples consisted of well-crystalized nanoplates with smooth surfaces and a thickness of tens of nanometers. The phase formation was investigated via X-ray powder diffraction (XRD) patterns and structural refinements. The formations of oxygen vacancies were verified and its effects on the optical and photocatalysis were discussed. The band gap of α-Bi2O3 was narrowed via forming the local energy levels by oxygen vacancy defect complexes in the lattices. The photocatalytic activities on photo-degradation of Rhodamine B (RhB) were significantly improved. The effective photocatalysis was discussed on the improved visible-light response, band structure, and dynamic luminescence decay. The photocatalysis of Na-doped α-Bi2O3 was improved via the induced oxygen vacancies. The reported hydrothermal synthesis was advantageous approach to prepare α-Bi2O3 by considering the simplicity, low reaction temperature, no post-sintering, without using any template or surfactant, large-scale production, low cost, etc.