A Unified Unsupervised Gaussian Mixture Variational Autoencoder for High Dimensional Outlier Detection

自编码 异常检测 计算机科学 离群值 人工智能 模式识别(心理学) 混合模型 降维 高斯分布 高斯过程 算法 深度学习 量子力学 物理
作者
Weixian Liao,Yifan Guo,Xuhui Chen,Pan Li
标识
DOI:10.1109/bigdata.2018.8622120
摘要

Paradigm-shifting systems such as cyber-physical systems, collect data of high- or ultrahigh- dimensionality tremendously. Detecting outliers in this type of systems provides indicative understanding in wide-ranging domains such as system health monitoring, information security, etc. Previous dimensionality reduction based outlier detection methods suffer from the incapability of well preserving the critical information in the low-dimensional latent space, mainly because they generally assume an isotropic Gaussian distribution as prior and fail to mine the intrinsic multimodality in high dimensional data. Moreover, most of the schemes decouple the model learning process, resulting in suboptimal performance. To tackle these challenges, in this paper, we propose a unified Unsupervised Gaussian Mixture Variational Autoencoder for outlier detection. Specifically, a variational autoencoder firstly trains a generative distribution and extracts reconstruction based features. Then we adopt a deep brief network to estimate the component mixture probabilities by the latent distribution and extracted features, which is further used by the Gaussian mixture model to estimate sample densities with the Expectation-Maximization (EM) algorithm. The inference model is optimized jointly with the variational autoencoder, the deep brief network, and the Gaussian mixture model. Afterwards, the proposed detector identifies outliers when the estimated sample density exceeds a learned threshold. Extensive simulations on six public benchmark datasets show that the proposed framework outperforms state-of-the-art outlier detection schemes and achieves, on average, 27% improvements in F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助B站萧亚轩采纳,获得10
1秒前
1秒前
我是老大应助暖暖采纳,获得10
2秒前
zz完成签到,获得积分20
2秒前
7秒前
yyx发布了新的文献求助10
9秒前
笑点低怀薇完成签到 ,获得积分10
9秒前
科研通AI2S应助Yzh采纳,获得10
10秒前
斯文败类应助森气采纳,获得10
11秒前
大模型应助落后的雁芙采纳,获得30
12秒前
N7完成签到,获得积分20
12秒前
不追小兔完成签到,获得积分10
13秒前
13秒前
VDC应助科研通管家采纳,获得30
14秒前
14秒前
领导范儿应助科研通管家采纳,获得30
14秒前
所所应助科研通管家采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
调研昵称发布了新的文献求助30
18秒前
哇哈哈哈完成签到,获得积分10
19秒前
JIAYUEMA发布了新的文献求助20
19秒前
victormanboy3完成签到,获得积分10
20秒前
zzz完成签到,获得积分10
23秒前
尹冰之完成签到,获得积分10
24秒前
小草三心发布了新的文献求助10
24秒前
24秒前
25秒前
NtoLse完成签到,获得积分10
26秒前
田様应助年轻就要气盛采纳,获得10
26秒前
26秒前
zm发布了新的文献求助10
27秒前
酸菜鱼火锅完成签到,获得积分10
28秒前
没有稗子发布了新的文献求助10
29秒前
WEI完成签到,获得积分10
29秒前
ssss完成签到,获得积分10
30秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213