计算机科学
分拆(数论)
元组
K-匿名
聚类分析
数据挖掘
等价类(音乐)
数据聚合器
算法
信息丢失
匿名
数据匿名化
机器学习
人工智能
信息隐私
数学
组合数学
离散数学
互联网隐私
计算机安全
计算机网络
无线传感器网络
作者
Xiang Wu,Yuyang Wei,Tao Jiang,Yu Wang,Shuguang Jiang
标识
DOI:10.2174/1574893614666190416152025
摘要
Objective: Biomedical data can be de-identified via micro-aggregation achieving privacy. However, the existing micro-aggregation algorithms result in low similarity within the equivalence classes, and thus, produce low-utility anonymous data when dealing with a sparse biomedical dataset. To balance data utility and anonymity, we develop a novel microaggregation framework. Methods: Combining a density-based clustering method and classical micro-aggregation algorithm, we propose a density-based second division micro-aggregation framework called DBTP . The framework allows the anonymous sets to achieve the optimal k- partition with an increased homogeneity of the tuples in the equivalence class. Based on the proposed framework, we propose a k − anonymity algorithm DBTP − MDAV and an l − diversity algorithm DBTP − l − MDAV to respond to different attacks. Conclusion: Experiments on real-life biomedical datasets confirm that the anonymous algorithms under the framework developed in this paper are superior to the existing algorithms for achieving high utility.
科研通智能强力驱动
Strongly Powered by AbleSci AI