作者
Jie Xu,Hung‐Chin Wu,Chenxin Zhu,Anatol Ehrlich,Leo Shaw,Mark Nikolka,Sihong Wang,Francisco Molina‐Lopez,Xiaodan Gu,Shaochuan Luo,Dongshan Zhou,Yun‐Hi Kim,Ging‐Ji Nathan Wang,Kevin L. Gu,Vivian R. Feig,Shucheng Chen,Yeongin Kim,Toru Katsumata,Yu‐Qing Zheng,He Yan,Jong Won Chung,Jeffrey Lopez,Boris Murmann,Zhenan Bao
摘要
Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π–π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films. Solution shearing of semiconducting polymers with a patterned blade induces improved alignment of the polymeric chains at the nano- and macroscale. This leads to increased charge transport in stretchable, roll-to-roll deposited organic transistors.