3D ultrasound biomicroscopy (3D-UBM) imaging and automated 3D assessment of the iridocorneal angle for glaucoma patients

超声生物显微镜 青光眼 眼科 医学 IRIS(生物传感器) 计算机科学 人工智能 计算机视觉 生物医学工程 光学 物理 生物识别
作者
Hao Wu,Tahseen Minhaz,Rich Helms,Duriye Damla Sevgi,Taocheng Yu,Faruk Örge,David L. Wilson
标识
DOI:10.1117/12.2513072
摘要

We created a new high resolution (50-MHz) three-dimensional ultrasound biomicroscopy (3D-UBM) imaging system and applied it to the measurement of iridoconeal angle, an important biomarker for glaucoma patients. Glaucoma, a leading cause of blindness, often results from poor drainage of the fluid from the eye through structures located at the iridiocorneal angle. Measurement of the angle has important implications for predicting the course of the disease and determining treatment strategies. An angle measured at a particular location with conventional 2D-UBM can be biased due to tilt in the hand-held probe. We created a 3D-UBM system by automatically scanning a 2D UBM with a precision translating stage. Using 3D-UBM, we typically acqure several hundred 2D images to create a high-resolution volume of the anterior chamber of the eye. Image pre-processing included intensity based frame-to-frame alignment to reduce effects of eye motion, 3D noise reduction, and multi-planar reformatting to create rotational views along the optic-axis with the pupil at the center, thereby giving views suitable for measurement of the iridiocorneal angle. Anterior chambers were segmented using a semantic-segmentation convolutional neural network, which gave folded "leave-one-eye-out" accuracy of 98.04%±0.01%, sensitivity of 90.97%±0.02%, specificity of 98.91%±0.01%, and Dice coefficient of 0.91±0.04. Using segmentations, iridiocorneal angles were automatically estimated using a modification of the semi-automated trabecular- iris-angle method (TIA) for each of ∼360 rotational views. Automated measurements were compared to those made by four ophthalmologist readers in eight images from two eyes. In these images, an insignificant difference (p = 0.996) was shown between readers and automated results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Qing灿采纳,获得10
刚刚
科研通AI2S应助sunrise采纳,获得10
刚刚
禧壹完成签到,获得积分10
1秒前
JamesPei应助Xiaohui_Yu采纳,获得10
1秒前
喵miao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
星辰大海应助逍遥子采纳,获得10
1秒前
Arrow完成签到,获得积分10
1秒前
1秒前
luoziwuhui完成签到,获得积分10
2秒前
姜彩秀发布了新的文献求助10
2秒前
哼1完成签到 ,获得积分10
2秒前
3秒前
3秒前
沉默的倔驴应助why采纳,获得10
3秒前
熊啾啾完成签到,获得积分10
3秒前
852应助可达可达采纳,获得10
4秒前
LBJ完成签到,获得积分10
4秒前
Aaaaguo完成签到 ,获得积分10
4秒前
5秒前
5秒前
馥芮白完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
小太阳发布了新的文献求助10
8秒前
共享精神应助强公子采纳,获得10
8秒前
8秒前
totoo2021应助月兮2013采纳,获得10
8秒前
无限聋五完成签到,获得积分10
8秒前
闪闪草莓发布了新的文献求助10
8秒前
8秒前
9秒前
CipherSage应助姜彩秀采纳,获得10
9秒前
bkagyin应助nnnnnnxh采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766395
求助须知:如何正确求助?哪些是违规求助? 5565174
关于积分的说明 15412411
捐赠科研通 4900635
什么是DOI,文献DOI怎么找? 2636548
邀请新用户注册赠送积分活动 1584789
关于科研通互助平台的介绍 1540042