Microsphere-based super-resolution scanning optical microscope

光学 显微镜 材料科学 分辨率(逻辑) 图像分辨率 近场扫描光学显微镜 光学显微镜 显微镜 近场光学 衍射 折射率 扫描电子显微镜 电介质 光电子学 物理 计算机科学 人工智能
作者
Gergely Huszka,Hui Yang,Martin A. M. Gijs
出处
期刊:Optics Express [The Optical Society]
卷期号:25 (13): 15079-15079 被引量:56
标识
DOI:10.1364/oe.25.015079
摘要

High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm2, where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼104 μm2. Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助科研通管家采纳,获得10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
jiben发布了新的文献求助10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
6777777L发布了新的文献求助10
1秒前
暴躁火龙果完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
欢呼的白玉完成签到 ,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
liao应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
baldman完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
yyc发布了新的文献求助10
3秒前
000发布了新的文献求助10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
源西瓜发布了新的文献求助30
4秒前
烟花应助科研通管家采纳,获得10
4秒前
DDD完成签到,获得积分10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
无极微光应助lemperory采纳,获得20
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
和谐亦瑶发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972