Early Fault Detection in Induction Motors Using AdaBoost With Imbalanced Small Data and Optimized Sampling

Boosting(机器学习) 阿达布思 计算机科学 人工智能 感应电动机 模式识别(心理学) 故障检测与隔离 机器学习 数据挖掘 断层(地质) 分类器(UML) 工程类 执行机构 电压 电气工程 地震学 地质学
作者
Ignacio Martin-Diaz,Daniel Moríñigo-Sotelo,Óscar Duque-Pérez,René de Jesús Romero-Troncoso
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 3066-3075 被引量:119
标识
DOI:10.1109/tia.2016.2618756
摘要

Intelligent fault detection in induction motors (IMs) is a widely studied research topic. Various artificial-intelligence-based approaches have been proposed to deal with a large amount of data obtained from destructive laboratory testing. However, in real applications, such volume of data is not always available due to the effort required in obtaining the predictors for classifying the faults. Therefore, in realistic scenarios, it is necessary to cope with the small-data problem, as it is known in the literature. Fault-related instances along with healthy state observations obtained from the IM compose datasets that are usually imbalanced, where the number of instances classified as the faulty class (minority) is much lower than those classified under the healthy class (majority). This paper presents a novel supervised classification approach for IM faults based on the adaptive boosting algorithm with an optimized sampling technique that deals with the imbalanced experimental dataset. The stator current signal is used to compose a dataset with features both from the time domain and from the frequency domain. The experimental results demonstrate that the proposed approach achieves higher performance metrics than others classifiers used in this field for the incipient detection and classification of faults in IM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangh65发布了新的文献求助10
刚刚
英姑应助Gu采纳,获得10
2秒前
dzf完成签到,获得积分10
3秒前
顾矜应助科研仔采纳,获得10
4秒前
4秒前
魔芋爽发布了新的文献求助10
5秒前
哈哈完成签到 ,获得积分10
5秒前
5秒前
8秒前
9秒前
QinQin发布了新的文献求助10
9秒前
9秒前
GISertttt完成签到,获得积分20
10秒前
11秒前
12秒前
Hosea发布了新的文献求助10
13秒前
冷静雅山关注了科研通微信公众号
13秒前
今后应助北海未暖采纳,获得10
14秒前
可可完成签到 ,获得积分10
14秒前
大喜子发布了新的文献求助200
14秒前
科研仔发布了新的文献求助10
15秒前
linjiaxin发布了新的文献求助10
15秒前
jz完成签到,获得积分10
16秒前
我是老大应助toey采纳,获得10
16秒前
17秒前
FashionBoy应助缥缈的紫青采纳,获得10
17秒前
hys完成签到,获得积分10
17秒前
希望天下0贩的0应助QinQin采纳,获得10
18秒前
欣喜宛亦发布了新的文献求助50
18秒前
固态完成签到,获得积分10
19秒前
活泼凌青完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
22秒前
实验室同学完成签到,获得积分10
22秒前
LiLi完成签到,获得积分10
22秒前
23秒前
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466394
求助须知:如何正确求助?哪些是违规求助? 3059156
关于积分的说明 9065091
捐赠科研通 2749616
什么是DOI,文献DOI怎么找? 1508644
科研通“疑难数据库(出版商)”最低求助积分说明 696987
邀请新用户注册赠送积分活动 696733