Multiple imputation of completely missing repeated measures data within person from a complex sample: application to accelerometer data in the National Health and Nutrition Examination Survey

插补(统计学) 缺少数据 全国健康与营养检查调查 计算机科学 统计 加速度计 推论 初始化 数据挖掘 数学 机器学习 人工智能 医学 人口 环境卫生 程序设计语言 操作系统
作者
Benmei Liu,Mandi Yu,Barry I. Graubard,Richard P. Troiano,Nathaniel Schenker
出处
期刊:Statistics in Medicine [Wiley]
卷期号:35 (28): 5170-5188 被引量:15
标识
DOI:10.1002/sim.7049
摘要

The Physical Activity Monitor component was introduced into the 2003–2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps . Because of an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units, typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003–2004 NHANES. The objective was to come up with an efficient imputation method that minimized model‐based assumptions. We adopted a multiple imputation approach based on additive regression, bootstrapping and predictive mean matching methods. This method fits alternative conditional expectation ( ace ) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally, some real data analyses are performed to compare the before and after imputation results. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ED应助是赤赤呀采纳,获得10
1秒前
2秒前
3秒前
魔鬼水果烤辣椒完成签到,获得积分10
3秒前
3秒前
慕青应助章鱼哥采纳,获得10
3秒前
lfjh完成签到,获得积分10
4秒前
CAOHOU应助00采纳,获得10
5秒前
阿欣完成签到,获得积分20
6秒前
6秒前
充电宝应助淡蓝蓝蓝采纳,获得10
7秒前
djiwisksk66应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
Akim应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
orixero应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
思源应助科研通管家采纳,获得10
8秒前
foceman发布了新的文献求助10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
CAOHOU应助黑黑黑采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得20
8秒前
sisthan发布了新的文献求助10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Water应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126