Multiple imputation of completely missing repeated measures data within person from a complex sample: application to accelerometer data in the National Health and Nutrition Examination Survey

插补(统计学) 缺少数据 全国健康与营养检查调查 计算机科学 统计 加速度计 推论 初始化 数据挖掘 数学 机器学习 人工智能 医学 人口 环境卫生 程序设计语言 操作系统
作者
Benmei Liu,Mandi Yu,Barry I. Graubard,Richard P. Troiano,Nathaniel Schenker
出处
期刊:Statistics in Medicine [Wiley]
卷期号:35 (28): 5170-5188 被引量:15
标识
DOI:10.1002/sim.7049
摘要

The Physical Activity Monitor component was introduced into the 2003–2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps . Because of an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units, typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003–2004 NHANES. The objective was to come up with an efficient imputation method that minimized model‐based assumptions. We adopted a multiple imputation approach based on additive regression, bootstrapping and predictive mean matching methods. This method fits alternative conditional expectation ( ace ) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally, some real data analyses are performed to compare the before and after imputation results. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助平淡的语蕊采纳,获得10
1秒前
xiu-er完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
Yunus发布了新的文献求助10
4秒前
5秒前
6秒前
ADAM发布了新的文献求助10
7秒前
7秒前
烟花应助衰神采纳,获得10
8秒前
ZYY123发布了新的文献求助10
8秒前
研友_VZG7GZ应助麻生采纳,获得10
8秒前
暮霭沉沉应助怡然曼彤采纳,获得10
9秒前
伊伊发布了新的文献求助10
9秒前
9秒前
9秒前
ddy完成签到,获得积分10
10秒前
lgh发布了新的文献求助10
10秒前
十七完成签到,获得积分10
10秒前
猪妹完成签到,获得积分20
11秒前
着急的又晴完成签到 ,获得积分10
11秒前
活泼饼干发布了新的文献求助10
11秒前
11完成签到 ,获得积分10
12秒前
12秒前
结实如音完成签到,获得积分10
13秒前
13秒前
ADAM完成签到,获得积分10
13秒前
Jalinezz完成签到,获得积分10
14秒前
李健应助leyellows采纳,获得10
14秒前
卓越发布了新的文献求助10
14秒前
CodeCraft应助lshl2000采纳,获得10
15秒前
16秒前
小问号完成签到,获得积分10
16秒前
17秒前
春夏秋冬完成签到,获得积分10
19秒前
new_vision发布了新的文献求助10
19秒前
19秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919