Multiple imputation of completely missing repeated measures data within person from a complex sample: application to accelerometer data in the National Health and Nutrition Examination Survey

插补(统计学) 缺少数据 全国健康与营养检查调查 计算机科学 统计 加速度计 推论 初始化 数据挖掘 数学 机器学习 人工智能 医学 人口 环境卫生 程序设计语言 操作系统
作者
Benmei Liu,Mandi Yu,Barry I. Graubard,Richard P. Troiano,Nathaniel Schenker
出处
期刊:Statistics in Medicine [Wiley]
卷期号:35 (28): 5170-5188 被引量:15
标识
DOI:10.1002/sim.7049
摘要

The Physical Activity Monitor component was introduced into the 2003–2004 National Health and Nutrition Examination Survey (NHANES) to collect objective information on physical activity including both movement intensity counts and ambulatory steps . Because of an error in the accelerometer device initialization process, the steps data were missing for all participants in several primary sampling units, typically a single county or group of contiguous counties, who had intensity count data from their accelerometers. To avoid potential bias and loss in efficiency in estimation and inference involving the steps data, we considered methods to accurately impute the missing values for steps collected in the 2003–2004 NHANES. The objective was to come up with an efficient imputation method that minimized model‐based assumptions. We adopted a multiple imputation approach based on additive regression, bootstrapping and predictive mean matching methods. This method fits alternative conditional expectation ( ace ) models, which use an automated procedure to estimate optimal transformations for both the predictor and response variables. This paper describes the approaches used in this imputation and evaluates the methods by comparing the distributions of the original and the imputed data. A simulation study using the observed data is also conducted as part of the model diagnostics. Finally, some real data analyses are performed to compare the before and after imputation results. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研不了一点完成签到,获得积分10
刚刚
OliAn完成签到,获得积分10
刚刚
刚刚
LiLi发布了新的文献求助10
1秒前
小汤发布了新的文献求助10
1秒前
1秒前
爱吃地锅鱼应助guo89采纳,获得10
1秒前
贼吖完成签到 ,获得积分20
2秒前
tjy完成签到,获得积分10
2秒前
2秒前
善学以致用应助李昕123采纳,获得20
3秒前
梁敏发布了新的文献求助10
3秒前
CarterXD完成签到,获得积分10
3秒前
hpc发布了新的文献求助10
3秒前
3秒前
Hwchaodoctor完成签到,获得积分10
3秒前
钮钴禄鬼鬼完成签到 ,获得积分20
4秒前
4秒前
小杜完成签到 ,获得积分10
4秒前
5秒前
中恐发布了新的文献求助10
5秒前
完美世界应助koki采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
石沉大海发布了新的文献求助10
7秒前
高高完成签到,获得积分20
9秒前
JamesPei应助风趣亦巧采纳,获得10
9秒前
10秒前
无花果应助梁敏采纳,获得10
10秒前
10秒前
11秒前
爱吃姜的面条完成签到,获得积分10
11秒前
Ray完成签到,获得积分10
12秒前
哈哈发布了新的文献求助20
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得20
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566