Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging

生物 表观遗传学 衰老 斑马鱼 发育可塑性 表型可塑性 有机体 表型 模式生物 进化生物学 遗传学 神经科学 可塑性 基因 物理 热力学
作者
Shuji Kishi
出处
期刊:Translational Research [Elsevier]
卷期号:163 (2): 123-135 被引量:11
标识
DOI:10.1016/j.trsl.2013.10.004
摘要

Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages ("embryonic/larval senescence"). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates. Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages ("embryonic/larval senescence"). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小果妈完成签到 ,获得积分10
刚刚
hsrlbc完成签到,获得积分10
5秒前
西哥完成签到 ,获得积分10
9秒前
神勇的天问完成签到 ,获得积分10
18秒前
菠萝谷波完成签到 ,获得积分10
21秒前
美丽觅夏完成签到 ,获得积分10
21秒前
TT完成签到 ,获得积分10
21秒前
笨笨忘幽完成签到,获得积分10
24秒前
是小小李哇完成签到 ,获得积分10
25秒前
科研通AI2S应助Billy采纳,获得10
28秒前
洁净的静芙完成签到 ,获得积分10
32秒前
zhang发布了新的文献求助50
39秒前
迈克老狼完成签到 ,获得积分10
40秒前
钟声完成签到,获得积分0
42秒前
博士搏斗完成签到 ,获得积分10
57秒前
巫马白亦完成签到,获得积分10
59秒前
飞云完成签到 ,获得积分10
59秒前
852应助自由老头采纳,获得10
1分钟前
zhang完成签到,获得积分10
1分钟前
1分钟前
繁荣的代秋完成签到 ,获得积分10
1分钟前
自由老头发布了新的文献求助10
1分钟前
脑洞疼应助SCINEXUS采纳,获得10
1分钟前
wanghao完成签到 ,获得积分10
1分钟前
Turbogao完成签到 ,获得积分10
1分钟前
LIGANG1111完成签到 ,获得积分10
1分钟前
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
卡卡完成签到,获得积分10
2分钟前
陈无敌完成签到 ,获得积分10
2分钟前
lingshan完成签到 ,获得积分10
2分钟前
星空完成签到 ,获得积分10
2分钟前
CLTTT完成签到,获得积分10
2分钟前
书生也是小郎中完成签到 ,获得积分10
2分钟前
柏忆南完成签到 ,获得积分10
2分钟前
wcw完成签到 ,获得积分10
2分钟前
维维完成签到 ,获得积分10
2分钟前
是我不得开心妍完成签到 ,获得积分10
2分钟前
Jonsnow完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768824
捐赠科研通 2440241
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792