A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 生物 古生物学
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
佳琳有乐完成签到,获得积分10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
CHAosLoopy应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
今后应助cccyq采纳,获得10
2秒前
烟花应助科研通管家采纳,获得30
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
2秒前
CHAosLoopy应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
swapping完成签到 ,获得积分10
9秒前
彭栋发布了新的文献求助10
11秒前
所所应助萨日呼采纳,获得10
12秒前
14秒前
隐形曼青应助hh采纳,获得50
16秒前
义气如萱发布了新的文献求助10
17秒前
小俊完成签到,获得积分10
19秒前
Nana发布了新的文献求助20
20秒前
小二郎应助修管子采纳,获得10
21秒前
mie完成签到,获得积分10
24秒前
24秒前
25秒前
寄语明月发布了新的文献求助10
27秒前
hh发布了新的文献求助50
29秒前
mie发布了新的文献求助10
29秒前
CipherSage应助wu基督教采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105