A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 生物 古生物学
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞代亦完成签到,获得积分10
刚刚
1秒前
哈哈哈哈完成签到,获得积分10
2秒前
佳小佳发布了新的文献求助30
3秒前
3秒前
彭于晏应助半分青蓝采纳,获得10
3秒前
橘子石榴完成签到 ,获得积分10
3秒前
今后应助echo采纳,获得10
5秒前
chriswtr发布了新的文献求助50
7秒前
斑点发布了新的文献求助10
8秒前
木樨完成签到,获得积分10
12秒前
务实的乌冬面完成签到,获得积分20
14秒前
dbq完成签到 ,获得积分10
14秒前
16秒前
Junlei完成签到,获得积分10
16秒前
17秒前
CodeCraft应助parpate采纳,获得10
17秒前
chriswtr完成签到,获得积分10
18秒前
19秒前
19秒前
粥小周发布了新的文献求助10
20秒前
21秒前
领导范儿应助羊青丝采纳,获得10
22秒前
无聊完成签到,获得积分10
22秒前
碧蓝帅哥发布了新的文献求助10
22秒前
一木发布了新的文献求助20
23秒前
今后应助无Wen3采纳,获得10
25秒前
钰钰发布了新的文献求助10
25秒前
26秒前
单薄树叶完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
parpate发布了新的文献求助10
28秒前
FATYE发布了新的文献求助10
30秒前
echo发布了新的文献求助10
31秒前
Lucky发布了新的文献求助10
32秒前
echo完成签到,获得积分10
35秒前
37秒前
zz发布了新的文献求助30
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640