A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 生物 古生物学
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hoshi1018完成签到,获得积分10
1秒前
友好曲奇完成签到,获得积分10
1秒前
dongdong完成签到 ,获得积分10
2秒前
CR7完成签到,获得积分0
3秒前
左丘忻完成签到,获得积分10
3秒前
凤迎雪飘完成签到,获得积分10
3秒前
3秒前
FashionBoy应助云轩采纳,获得10
4秒前
领导范儿应助伏伏雅逸采纳,获得10
4秒前
5秒前
Rondab应助悦耳荟采纳,获得10
5秒前
liqian完成签到,获得积分10
5秒前
易安发布了新的文献求助100
6秒前
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
cdh1994应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
沉默的谷秋完成签到,获得积分10
7秒前
大个应助科研通管家采纳,获得10
7秒前
过时的热狗完成签到,获得积分10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
10秒前
酷波er应助cp3xzh采纳,获得10
10秒前
原鑫完成签到,获得积分10
12秒前
12秒前
乐观如松完成签到,获得积分10
12秒前
从容雨筠完成签到,获得积分10
12秒前
Lucas应助云轩采纳,获得10
14秒前
kk子发布了新的文献求助10
15秒前
开灯人和关灯人完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048