A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 古生物学 生物
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈敏娇完成签到,获得积分10
1秒前
1秒前
2秒前
4秒前
dove完成签到,获得积分10
5秒前
大模型应助陈洋采纳,获得10
5秒前
5秒前
cencen发布了新的文献求助10
7秒前
8秒前
dove发布了新的文献求助10
11秒前
田様应助wwz采纳,获得20
12秒前
13秒前
紫麒麟完成签到,获得积分10
14秒前
14秒前
溜溜莓完成签到,获得积分10
16秒前
17秒前
世界尽头完成签到,获得积分10
17秒前
19秒前
华仔应助Summer采纳,获得10
19秒前
orixero应助神勇秋白采纳,获得10
19秒前
莉莉发布了新的文献求助10
20秒前
21秒前
开朗筮发布了新的文献求助10
22秒前
海绵宝宝完成签到,获得积分10
27秒前
开朗筮完成签到,获得积分10
29秒前
29秒前
29秒前
1111茗完成签到 ,获得积分20
32秒前
33秒前
锤子简历关注了科研通微信公众号
33秒前
iuu完成签到,获得积分10
33秒前
空写乐发布了新的文献求助10
33秒前
Vivian发布了新的文献求助10
34秒前
36秒前
40秒前
40秒前
43秒前
惊执虫儿发布了新的文献求助10
44秒前
灵珠学医完成签到 ,获得积分10
44秒前
锤子简历发布了新的文献求助10
46秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206874
求助须知:如何正确求助?哪些是违规求助? 4385090
关于积分的说明 13655640
捐赠科研通 4243471
什么是DOI,文献DOI怎么找? 2328142
邀请新用户注册赠送积分活动 1325869
关于科研通互助平台的介绍 1277979