A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 古生物学 生物
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王秋田应助罗梦芬采纳,获得20
1秒前
1秒前
1秒前
1秒前
熠熠完成签到,获得积分10
1秒前
whynot发布了新的文献求助10
1秒前
1秒前
现代山雁发布了新的文献求助10
2秒前
2秒前
LLLLLL发布了新的文献求助10
2秒前
香蕉觅云应助朝俞采纳,获得10
2秒前
知名不具完成签到 ,获得积分10
3秒前
wei发布了新的文献求助10
4秒前
4秒前
影子发布了新的文献求助10
4秒前
油麦菜完成签到,获得积分10
5秒前
mafukairi发布了新的文献求助30
5秒前
hanlin完成签到,获得积分10
6秒前
利于蓄力发布了新的文献求助10
6秒前
清心发布了新的文献求助10
7秒前
8秒前
8秒前
wanci应助科研废物采纳,获得10
9秒前
隐形曼青应助chen采纳,获得10
9秒前
XRH完成签到,获得积分10
10秒前
10秒前
whynot完成签到,获得积分10
10秒前
彩色阳光完成签到,获得积分10
10秒前
浮游应助任性宇豪采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
JIA完成签到,获得积分20
12秒前
WZD完成签到,获得积分20
12秒前
fangzhang发布了新的文献求助10
13秒前
13秒前
沉静的蜗牛完成签到,获得积分10
13秒前
77seven发布了新的文献求助10
13秒前
huang发布了新的文献求助10
13秒前
jay完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884713
求助须知:如何正确求助?哪些是违规求助? 4169858
关于积分的说明 12939294
捐赠科研通 3930463
什么是DOI,文献DOI怎么找? 2156559
邀请新用户注册赠送积分活动 1174925
关于科研通互助平台的介绍 1079670