A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results

线性判别分析 结核(地质) 模式识别(心理学) 放射科 医学诊断 肺孤立结节 人工智能 核医学 数学 医学 计算机断层摄影术 计算机科学 生物 古生物学
作者
Michael F. McNitt‐Gray,Eric Hart,Nathaniel Wyckoff,James W. Sayre,Jonathan Goldin,Denise R. Aberle
出处
期刊:Medical Physics [Wiley]
卷期号:26 (6): 880-888 被引量:188
标识
DOI:10.1118/1.598603
摘要

The purpose of this research is to characterize solitary pulmonary nodules as benign or malignant based on quantitative measures extracted from high resolution CT (HRCT) images. High resolution CT images of 31 patients with solitary pulmonary nodules and definitive diagnoses were obtained. The diagnoses of these 31 cases (14 benign and 17 malignant) were determined from either radiologic follow‐up or pathological specimens. Software tools were developed to perform the classification task. On the HRCT images, solitary nodules were identified using semiautomated contouring techniques. From the resulting contours, several quantitative measures were extracted related to each nodule's size, shape, attenuation, distribution of attenuation, and texture. A stepwise discriminant analysis was performed to determine which combination of measures were best able to discriminate between the benign and malignant nodules. A linear discriminant analysis was then performed using selected features to evaluate the ability of these features to predict the classification for each nodule. A jackknifed procedure was performed to provide a less biased estimate of the linear discriminator's performance. The preliminary discriminant analysis identified two different texture measures—correlation and difference entropy—as the top features in discriminating between benign and malignant nodules. The linear discriminant analysis using these features correctly classified 28/31 cases (90.3%) of the training set. A less biased estimate, using jackknifed training and testing, yielded the same results (90.3% correct). The preliminary results of this approach are very promising in characterizing solitary nodules using quantitative measures extracted from HRCT images. Future work involves including contrast enhancement and three‐dimensional measures extracted from volumetric CT scans, as well as the use of several pattern classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助XU采纳,获得10
刚刚
Wing发布了新的文献求助10
1秒前
偶然发现的西柚完成签到 ,获得积分10
2秒前
无心的无施完成签到,获得积分20
2秒前
JamesPei应助科研通管家采纳,获得10
4秒前
乐观板凳发布了新的文献求助30
4秒前
科研通AI5应助科研通管家采纳,获得20
4秒前
烟花应助科研通管家采纳,获得10
4秒前
三千世界完成签到,获得积分10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
Akim应助薛妖怪采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
扣子发布了新的文献求助10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
个性的振家完成签到,获得积分10
5秒前
6秒前
7秒前
szs完成签到,获得积分10
9秒前
501小队完成签到,获得积分10
10秒前
10秒前
SciGPT应助欣新采纳,获得10
10秒前
薛微有点甜完成签到 ,获得积分10
11秒前
小小小乐发布了新的文献求助10
11秒前
11秒前
段大开完成签到,获得积分20
12秒前
橡皮泥发布了新的文献求助10
14秒前
SONG完成签到 ,获得积分20
15秒前
sims发布了新的文献求助10
15秒前
贺同学完成签到,获得积分10
17秒前
所所应助开心千青采纳,获得10
17秒前
17秒前
orixero应助trace采纳,获得10
18秒前
终于花开日完成签到 ,获得积分10
18秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572102
求助须知:如何正确求助?哪些是违规求助? 3142380
关于积分的说明 9447398
捐赠科研通 2843806
什么是DOI,文献DOI怎么找? 1563098
邀请新用户注册赠送积分活动 731575
科研通“疑难数据库(出版商)”最低求助积分说明 718603