曲折
流线、条纹线和路径线
分形
席尔宾斯基地毯
分形维数
谢尔宾斯基三角
多孔介质
分形导数
网络的分形维数
数学
电流(流体)
维数(图论)
统计物理学
数学分析
几何学
多孔性
分形分析
机械
物理
地质学
热力学
纯数学
岩土工程
作者
Jianchao Cai,Xiangyun Hu,Ping Fan,Qi Han,Jinge Lu,Chu-Lin Cheng,Feng Zhou
出处
期刊:Fractals
[World Scientific]
日期:2015-03-01
卷期号:23 (01): 1540012-1540012
被引量:45
标识
DOI:10.1142/s0218348x15400125
摘要
The fractal dimension of random walker (FDRW) is an important parameter for description of electrical conductivity in porous media. However, it is somewhat empirical in nature to calculate FDRW. In this paper, a simple relation between FDRW and tortuosity fractal dimension (TFD) of current streamlines is derived, and a novel method of computing TFD for different generations of two-dimensional Sierpinski carpet and three-dimensional Sierpinski sponge models is presented through the finite element method, then the FDRW can be accordingly predicted; the proposed relation clearly shows that there exists a linear relation between pore fractal dimension (PFD) and TFD, which may have great potential in analysis of transport properties in fractal porous media.
科研通智能强力驱动
Strongly Powered by AbleSci AI