上位性
过度显性
杂种优势
生物
数量性状位点
遗传学
杂合子丢失
基因座(遗传学)
人口
优势(遗传学)
特质
等位基因
混合的
农学
基因
计算机科学
社会学
人口学
程序设计语言
作者
S. B. Yu,J. X. Li,Chao Xu,Y. F. Tan,Yingxia Gao,X. H. Li,Qifa Zhang,M. A. Saghai Maroof
标识
DOI:10.1073/pnas.94.17.9226
摘要
The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F(2:3) families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI