热传导
质子
采样(信号处理)
材料科学
离子键合
能量(信号处理)
格子(音乐)
高斯分布
计算机科学
化学物理
生物系统
化学
物理
计算化学
数学
离子
统计
复合材料
滤波器(信号处理)
有机化学
生物
量子力学
计算机视觉
声学
作者
Kazuaki Toyoura,Daisuke Hirano,Atsuto Seko,M. Shiga,Akihide Kuwabara,Masayuki Karasuyama,Kazuki Shitara,Ichiro Takeuchi
出处
期刊:Physical review
[American Physical Society]
日期:2016-02-17
卷期号:93 (5)
被引量:58
标识
DOI:10.1103/physrevb.93.054112
摘要
In this paper, we propose a selective sampling procedure to preferentially evaluate a potential energy surface (PES) in a part of the configuration space governing a physical property of interest. The proposed sampling procedure is based on a machine learning method called the Gaussian process (GP), which is used to construct a statistical model of the PES for identifying the region of interest in the configuration space. We demonstrate the efficacy of the proposed procedure for atomic diffusion and ionic conduction, specifically the proton conduction in a well-studied proton-conducting oxide, barium zirconate BaZrO3. The results of the demonstration study indicate that our procedure can efficiently identify the low-energy region characterizing the proton conduction in the host crystal lattice, and that the descriptors used for the statistical PES model have a great influence on the performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI