Photovoltaics literature survey (no. 21)

光伏 纳米技术 环境科学 数据科学 材料科学 计算机科学 工程类 光伏系统 电气工程
作者
Bryce S. Richards
出处
期刊:Progress in Photovoltaics [Wiley]
卷期号:11 (2): 151-153
标识
DOI:10.1002/pip.488
摘要

Progress in Photovoltaics: Research and ApplicationsVolume 11, Issue 2 p. 151-153 Literature Survey Photovoltaics literature survey (no. 21) Bryce S. Richards, Bryce S. Richards Centre for Photovoltaic Engineering, University of New South Wales, Sydney, NSW 2052, AustraliaSearch for more papers by this author Bryce S. Richards, Bryce S. Richards Centre for Photovoltaic Engineering, University of New South Wales, Sydney, NSW 2052, AustraliaSearch for more papers by this author First published: 27 February 2003 https://doi.org/10.1002/pip.488AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. References 1. FUNDAMENTALS, CHARACTERISATION, NEW APPROACHES AND GENERAL REVIEWS Google Scholar Romero J, Al-Jassim MM. Advantages of using piezoelectric quantum structures for photovoltaics. Journal of Applied Physics 1 Jan 2003; 93(1): 626–631. 10.1063/1.1524705 CASWeb of Science®Google Scholar Tablero C, Wahnón P. Analysis of metallic intermediate-band formation in photovoltaic materials. Applied Physics Letters 6 Jan 2003; 82(1): 151–153. 10.1063/1.1535744 CASWeb of Science®Google Scholar Tobias I, Luque A. Ideal efficiency and potential of solar thermophotonic converters under optically and thermally concentrated power flux. IEEE Transactions on Electron Devices Nov 2002; 49(11): 2024–2030. 10.1109/TED.2002.804731 Web of Science®Google Scholar Wahnón P, Tablero C. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Physical Review B 2002; 65: 165115. 10.1103/PhysRevB.65.165115 CASWeb of Science®Google Scholar McIntosh KR, Clark JD. An expression for the uncertainty introduced by the discrete sampling of a solar cell's J–V curve. Solid-State Electronics Nov 2002; 46(11): 2009–2011. 10.1016/S0038-1101(02)00169-7 CASWeb of Science®Google Scholar 2. CRYSTALLINE SILICON—BULK CELLS Google Scholar Ebner R, Radike M, Schlosser V, et al. Metal fingers on grain boundaries in multicrystalline silicon solar cells. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 1–13. 10.1002/pip.455 CASWeb of Science®Google Scholar Richards BS, Rowlands SF, Honsberg CB, et al. TiO2 DLAR coatings for planar silicon solar cells. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 27–32. 10.1002/pip.474 CASWeb of Science®Google Scholar Schmiga C, Schmidt J, Metz A, et al. 17.6% efficient tricrystalline silicon solar cells with spatially uniform texture. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 33–38. 10.1002/pip.479 CASWeb of Science®Google Scholar Nositschka WA, Beneking C, Voigt O, et al. Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 155–166. 10.1016/S0927-0248(02)00214-3 CASWeb of Science®Google Scholar Toušek J, Dolhov S, Toušková J. Interpretation of minority carrier diffusion length measurements in thin silicon wafers. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 205–210. 10.1016/S0927-0248(02)00371-9 Web of Science®Google Scholar Martín I, Vetter M, Orpella A, et al. Surface passivation of n-type crystalline Si by plasma-enhanced-chemical-vapor-deposited amorphous SiCx:H and amorphous SiCxNy:H films. Applied Physics Letters 2 Dec 2002; 81(23): 4461–4463. 10.1063/1.1527230 CASWeb of Science®Google Scholar Kuznicki ZT. Enhanced absorption and quantum efficiency in locally modified single-crystal Si. Applied Physics Letters 16 Dec 2002; 81(25): 4853–4855. 10.1063/1.1528730 CASWeb of Science®Google Scholar Rohatgi A, Jeong J-W. High-efficiency screen-printed silicon ribbon solar cells by effective defect passivation and rapid thermal processing. Applied Physics Letters 13 Jan 2003; 82(2): 224–226. 10.1063/1.1536027 CASWeb of Science®Google Scholar Ein-Eli Y, Starosvetsky D. Silicon Texturing in Alkaline Media Conducted Under Extreme Negative Potentials. Electrochemical and Solid-State Letters Mar 2003; 6(3): C47–C50. 10.1149/1.1544212 CASWeb of Science®Google Scholar Takano A, Wada T, Shimosawa M, et al. Working pressure effects on deposition of large-area microcrystalline silicon films on flexible plastic substrate at 130 degrees C. Japanese Journal of Applied Physics Part 15 Sep 2002; 41(Part 2, No.9A/B)): L978–L980. 10.1143/JJAP.41.L978 CASWeb of Science®Google Scholar Nasuno Y, Kondo M, Matsuda A. Key issue for the fabrication of high-efficiency microcrystalline silicon thin-film solar cells at low temperatures. Japanese Journal of Applied Physics Oct 2002; 41(Part 1, No.10): 5912–5918. 10.1143/JJAP.41.5912 CASWeb of Science®Google Scholar Hashigami H, Dhamrin M, Saitoh T. Performance degradation of Czochralski-grown silicon solar cells by means of current injection. Japanese Journal of Applied Physics 1 Nov 2002; 41(Part 2, No. 11A): L1191–L1193. 10.1143/JJAP.41.L1191 CASWeb of Science®Google Scholar Jensen, JAD, Møller P, Bruton T, et al. Electrochemical Deposition of Buried Contacts in High-Efficiency Crystalline Silicon Photovoltaic Cells. Journal of the Electrochemical Society Jan 2003; 150(1): G49–G57. 10.1149/1.1528943 CASWeb of Science®Google Scholar Wang H, Yang H, Yu H, et al. Weak light effect in multicrystalline silicon solar cells. Microelectronics Journal Aug 2002; 33(8): 671–674. 10.1016/S0026-2692(02)00037-X CASWeb of Science®Google Scholar 3. CRYSTALLINE SILICON—THIN FILM CELLS Google Scholar Matsui T, Muhida R, Kawamura T, et al. Microstructural dependence of electron and hole transport in low-temperature-grown polycrystalline-silicon thin-film solar cells. Applied Physics Letters 16 Dec 2002; 81(25): 4751–4754. 10.1063/1.1527979 CASWeb of Science®Google Scholar Song DY, Neuhaus DH, Xia J, et al. Structure and characteristics of ZnO:Al/n-Si heterojunctions prepared by magnetron sputtering. Thin Solid Films 20 Dec 2002; 422(1–2): 180–185. 10.1016/S0040-6090(02)00971-9 CASWeb of Science®Google Scholar 4. AMORPHOUS AND MICROCRYSTALLINE SILICON Google Scholar Krč J, Smole F, Topič M. Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 15–26. 10.1002/pip.460 CASWeb of Science®Google Scholar van Veen MK, Schropp REI. Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells. Journal of Applied Physics 1 Jan 2003; 93(1): 121–125. 10.1063/1.1527208 CASWeb of Science®Google Scholar Poissant Y, Chatterjee P, Roca i Cabarrocas P. No benefit from microcrystalline silicon N layers in single junction amorphous silicon p-i-n solar cells. Journal of Applied Physics 1 Jan 2003; 93(1): 170–174. 10.1063/1.1524026 CASWeb of Science®Google Scholar van Veen MK, Schropp REI. Understanding shunting behavior in hot-wire-deposited amorphous silicon solar cells. Applied Physics Letters 13 Jan 2003; 82(2): 287–289. 10.1063/1.1536710 CASWeb of Science®Google Scholar Xuemin T, Rusop M, Hayashi Y, et al. Boron-incorporated amorphous carbon films deposited by pulsed laser deposition. Japanese Journal of Applied Physics Part 15 Sep 2002; 41(Part 2, No.9A/B): L970–L973. 10.1143/JJAP.41.L970 CASWeb of Science®Google Scholar Banerjee C, Sarker A, Barua AK. Development of stabilized dual gap double junction a-Si solar cell using helium diluted a-Si:H intrinsic layer. Journal of Physics D 7 Dec 2002; 35(23): 3060–3064. 10.1088/0022-3727/35/23/305 CASWeb of Science®Google Scholar Powell MJ, Deane SC, Wehrspohn RB. Microscopic mechanisms for creation and removal of metastable dangling bonds in hydrogenated amorphous silicon. Physical Review B 2002; 66: 155212. 10.1103/PhysRevB.66.155212 CASWeb of Science®Google Scholar Klimovsky E, Rath JK, Schropp REI, et al. Errors introduced in a-Si:H-based solar cell modeling when dangling bonds are approximated by decoupled states. Thin Solid Films 20 Dec 2002; 422(1–2): 211–219. 10.1016/S0040-6090(02)00972-0 CASWeb of Science®Google Scholar 5. NANOCRYSTALLINE DYE-SENSITIZED AND ORGANIC CELLS Google Scholar Ito S, Kitamura T, Wada Y, et al. Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 3–13. 10.1016/S0927-0248(02)00209-X CASWeb of Science®Google Scholar Zumeta I, Espinosa R, Ayllón JA, et al. Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 15–24. 10.1016/S0927-0248(02)00247-7 CASWeb of Science®Google Scholar Tesfamichael T, Will G, Bell J, et al. Characterization of a commercial dye-sensitised titania solar cell electrode. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 25–35. 10.1016/S0927-0248(02)00248-9 CASWeb of Science®Google Scholar Gómez MM, Beermann N, Lu J, et al. Dye-sensitized sputtered titanium oxide films for photovoltaic applications: influence of the O2/Ar gas flow ratio during the deposition. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 37–56. 10.1016/S0927-0248(02)00215-5 Web of Science®Google Scholar Bandaranayake PKM, Jayaweera PVV, Tennakone K. Dye-sensitization of magnesium-oxide-coated cadmium sulphide. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 57–64. 10.1016/S0927-0248(02)00249-0 CASWeb of Science®Google Scholar Tai W-P. Photoelectrochemical properties of ruthenium dye- sensitized nanocrystalline SnO2:TiO2 solar cells. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 65–73. 10.1016/S0927-0248(02)00250-7 CASWeb of Science®Google Scholar Shtygashev A, Ovchinnikov Y, Shklover V. Simple quantum models of electron injection from a sensitizer molecule to semiconductor nanocrystals. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 75–84. 10.1016/S0927-0248(02)00251-9 CASWeb of Science®Google Scholar Smestad GP, Spiekermann S, Kowalik J, et al. A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 85–105. 10.1016/S0927-0248(02)00252-0 CASWeb of Science®Google Scholar Camaioni N, Ridolfi G, Casalbore-Miceli G, et al. A stabilization effect of [60]fullerene in donor–acceptor organic solar cells. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 107–113. 10.1016/S0927-0248(02)00253-2 CASWeb of Science®Google Scholar Takahashi K, Nakajima I, Imoto K, et al. Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells. Solar Energy Materials and Solar Cells 15 Feb 2003; 76(1): 115–124. 10.1016/S0927-0248(01)00221-5 CASWeb of Science®Google Scholar Wheatley MG, McDonagh AM, Brungs MP, et al. A study of reverse bias in a dye sensitised photoelectrochemical device. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 175–181. 10.1016/S0927-0248(02)00317-3 CASWeb of Science®Google Scholar Drees M, Premaratne K, Graupner W. Creation of a gradient polymer-fullerene interface in photovoltaic devices by thermally controlled interdiffusion. Applied Physics Letters 9 Dec 2002; 81(24): 4607–4609. 10.1063/1.1522830 CASWeb of Science®Google Scholar Wagner P, Aubert P-H, Lutsen L, et al. Conjugated polymers based on new thienylene—PPV derivatives for solar cell applications. Electrochemistry Communications Nov 2002; 4(11): 912–916. 10.1016/S1388-2481(02)00487-3 CASWeb of Science®Google Scholar Saitoh H, Takayama K, Sugata H, et al. Nanoarchitecture of titania designed for ruthenium dye-sensitized photoelectrochemical cells. Japanese Journal of Applied Physics 1 Nov 2002; 41(Part 2, No.11A): L1250–L1252. 10.1143/JJAP.41.L1250 CASWeb of Science®Google Scholar Hong JS, Joo M, Vittal R, et al. Improved Photocurrent-Voltage Characteristics of Ru(II)-Dye Sensitized Solar Cells with Polypyrrole-Anchored TiO2 Films. Journal of the Electrochemical Society Dec 2002; 149(12): E493–E496. 10.1149/1.1518486 CASWeb of Science®Google Scholar Bauer C, Boschloo G, Mukhtar E, et al. Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells. Journal of Physical Chemistry B 2002; 106(49): 12693–12704. 10.1021/jp0200268 CASWeb of Science®Google Scholar Katoh R, Furube A, Hara K, et al. Efficiencies of electron injection from excited sensitizer dyes to nanocrystalline ZnO films as studied by near-IR optical absorption of injected electrons. Journal of Physical Chemistry B 19 Dec 2002; 106(50): 12957–12964. 10.1021/jp021484j CASWeb of Science®Google Scholar Cass MJ, Qiu FL, Walker AB, et al. Influence of Grain Morphology on Electron Transport in Dye Sensitized Nanocrystalline Solar Cells. Journal of Physical Chemistry B 2003; 107(1): 113–119. 10.1021/jp026798l CASWeb of Science®Google Scholar Hara K, Sato T, Katoh R, et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry B 2003; 107(2): 597–606. 10.1021/jp026963x CASWeb of Science®Google Scholar 6. CIS, CdTe AND II-VI CELLS Google Scholar Marsillac S, Zouaghi MC, Bernède JC, et al. Evolution of the properties of spray-deposited CuInS2 thin films with post-annealing treatment. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 125–134. 10.1016/S0927-0248(02)00210-6 CASWeb of Science®Google Scholar Jiang C-S, Hasoon FS, Moutinho HR, et al. Direct evidence of a buried homojunction in Cu(In,Ga)Se2 solar cells. Applied Physics Letters 6 Jan 2003; 82(1): 127–129. 10.1063/1.1534417 CASWeb of Science®Google Scholar Heske C, Groh U, Weinhardt L, et al. Damp-heat induced sulfate formation in Cu(In,Ga)(S,Se)2-based thin film solar cells. Applied Physics Letters 9 Dec 2002; 81(24): 4550–4552. 10.1063/1.1525884 CASWeb of Science®Google Scholar Visoly-Fisher I, Cohen SR, Cahen D. Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements. Applied Physics Letters 27 Jan 2003; 82(4): 556–558. 10.1063/1.1542926 CASWeb of Science®Google Scholar Shigetomi S, Ikari T. Optical and electrical properties of layer semiconductor n-InSe doped with Sn. Japanese Journal of Applied Physics Sep 2002; 41(Part 1, No.9): 5565–5566. 10.1143/JJAP.41.5565 CASWeb of Science®Google Scholar Alamri SN. Effect of transparent conductive oxide stability on CdS/CdTe solar cell performance. Japanese Journal of Applied Physics 1 Oct 2002; 41(Part 2, No.10A): L1052–L1054. 10.1143/JJAP.41.L1052 CASWeb of Science®Google Scholar Nakada T, Hirabayashi Y, Tokado T. Cu(In1-x, Gax)Se2-based thin film solar cells using transparent conducting back contacts. Japanese Journal of Applied Physics 1 Nov 2002; 41(Part 2, No.11A): L1209–L1211. 10.1143/JJAP.41.L1209 CASWeb of Science®Google Scholar Yamaguchi T, Tanaka T, Yoshia A. Effect of substrate position in i-ZnO thin-film formation to Cu(In,Ga)Se2 solar cell. Journal of Vacuum Science & Technology A Sep/Oct 2002; 20(5): 1755–1758. 10.1116/1.1502696 CASWeb of Science®Google Scholar Al-Shibani KM. Effect of isothermal annealing on CdTe and the study of electrical properties of Au-CdTe Schottky barriers. Physica B Sep 2002; 322(3–4): 390–396. 10.1016/S0921-4526(02)01278-4 CASWeb of Science®Google Scholar Dharmadasa IM, Samantilleke AP, Chaure NB, et al. New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semiconductor Science and Technology December 2002; 17(12): 1238–1248. 10.1088/0268-1242/17/12/306 CASWeb of Science®Google Scholar 7. III-V AND QUANTUM WELL CELLS, THERMOPHOTOVOLTAICS Google Scholar Toušková J, Kindl D, Samochin E, et al. Charge transport study and spectral response of GaSb/GaAs heterojunctions prepared by MOVPE. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 135–145. 10.1016/S0927-0248(02)00212-X Web of Science®Google Scholar Yang WM, Chou SK, Shu C, et al. Development of microthermophotovoltaic system. Applied Physics Letters 30 Dec 2002; 81(27): 5255–5257. 10.1063/1.1533847 CASWeb of Science®Google Scholar Derluyn J, Dessein K, Flamand G, et al. Comparison of MOVPE grown GaAs solar cells using different substrates and group-V precursors. Journal of Crystal Growth Jan 2003; 247(3–4): 237–244. 10.1016/S0022-0248(02)01946-2 CASWeb of Science®Google Scholar Rault FK, Zahedi A. Computational analysis of the refractive index of multiple quantum wells for QWSC applications. Microelectronics Journal 1 Feb 2003; 34(2): 149–158. 10.1016/S0026-2692(02)00141-6 Web of Science®Google Scholar Feteha MY, Eldallal GM. The effects of temperature and light concentration on the GaInP/GaAs multijunction solar cell's performance. Renewable Energy Jun 2003; 28(7): 1097–1104. 10.1016/S0960-1481(02)00211-2 CASWeb of Science®Google Scholar 8. SPACE CELLS AND APPLICATIONS Google Scholar J GB, Choi JD. Design of solar array simulator for spacecraft. Kiee International Transactions on Electrical Machinery & Energy Conversion Systems Jun 2002; 12B(2): 52–6. Google Scholar 9. TERRESTRIAL MODULES, BOS COMPONENTS, SYSTEMS AND APPLICATIONS Google Scholar Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 47–62. 10.1002/pip.459 Web of Science®Google Scholar Masoum MAS, Dehbonei H, Fuchs EF. Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Transactions on Energy Conversion Dec 2002; 17(4): 514–522. 10.1109/TEC.2002.805205 Web of Science®Google Scholar Shimokawa R, Ikeda H, Miyake Y, et al. Development of wide field-of-view cavity radiometer for solar simulator use and intercomparison between irradiance measurements based on the world radiometer reference and electrotechnical laboratory scales. Japanese Journal of Applied Physics 3 Aug 2002; 41(Part 1, No.8): 5088–5093. 10.1143/JJAP.41.5088 CASWeb of Science®Google Scholar Kolhe M, Agbossou K, Hamelin J, et al. Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen. Renewable Energy Apr 2003; 28(5): 727–742. 10.1016/S0960-1481(02)00107-6 CASWeb of Science®Google Scholar Pande PC, Singh AK, Ansari S. Design development and testing of a solar PV pump based drip system for orchards. Renewable Energy Mar 2003; 28(3): 385–396. 10.1016/S0960-1481(02)00037-X Web of Science®Google Scholar Bhuiyan MMH and Ali Asgar M. Sizing of a stand-alone photovoltaic power system at Dhaka. Renewable Energy May 2003; 28(6): 929–938. 10.1016/S0960-1481(02)00154-4 Web of Science®Google Scholar Dai YJ, Wang RZ, Ni L. Experimental investigation on a thermoelectric refrigerator driven by solar cells. Renewable Energy May 2003; 28(6): 949–959. 10.1016/S0960-1481(02)00055-1 CASWeb of Science®Google Scholar Dakkak M, Hirata A, Muhida R, et al. Operation strategy of residential centralized photovoltaic system in remote areas. Renewable Energy Jun 2003; 28(7): 997–1012. 10.1016/S0960-1481(02)00222-7 Web of Science®Google Scholar Hamidat A, Benyoucef B, Hartani T. Small-scale irrigation with photovoltaic water pumping system in Sahara regions. Renewable Energy Jun 2003; 28(7): 1081–1096. 10.1016/S0960-1481(02)00058-7 Web of Science®Google Scholar 10. POLICY, ECONOMICS, HEALTH AND ENVIRONMENT Google Scholar Labed S, Lorenzo E. Evaluation of the Algerian photovoltaic market potential. Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 63–72. 10.1002/pip.461 Web of Science®Google Scholar Tezuka T, Okushima K, Sawa T. Carbon tax for subsidizing photovoltaic power generation systems and its effect on carbon dioxide emissions. Applied Energy Jul-Aug 2002; 72(3–4): 677–688. 10.1016/S0306-2619(02)00057-0 CASWeb of Science®Google Scholar Bakos GC, Soursosb M. Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece. Applied Energy Oct 2002; 73(2): 183–193. 10.1016/S0306-2619(02)00062-4 Web of Science®Google Scholar Licht S. Efficient solar generation of hydrogen fuel—a fundamental analysis. Electrochemistry Communications Oct 2002; 4(10): 790–795. 10.1016/S1388-2481(02)00443-5 CASWeb of Science®Google Scholar Oulata RT, Oulata SN. Solar Energy Potential in Turkey. Energy Sources Dec 2002; 24(12): 1055–1064. 10.1080/00908310290086987 Web of Science®Google Scholar Sharpe L. Bring me sunshine (building-integrated photovoltaics). IEE Review Jan 2003; 49(1): 46–49. 10.1049/ir:20030103 Web of Science®Google Scholar Posorski R, Bussmann M, Menke C. Does the use of Solar Home Systems (SHS) contribute to climate protection? Renewable Energy Jun 2003; 28(7): 1061–1080. 10.1016/S0960-1481(02)00056-3 CASWeb of Science®Google Scholar 11. VARIOUS MATERIALS, MISCELLANEOUS Google Scholar Green MA, Emery K, King DL, et al. Solar cell efficiency tables (version 21). Progress in Photovoltaics: Research and Applications Jan 2003; 11(1): 39–45. 10.1002/pip.478 CASWeb of Science®Google Scholar Poelman D, Clauws P, Depuydt B. Chemical surface passivation of low resistivity p-type Ge wafers for solar cell applications. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 167–173. 10.1016/S0927-0248(02)00216-7 CASWeb of Science®Google Scholar Ferrer IJ, Ares JR, Sánchez CR. A note on the Hall mobility and carrier concentration in pyrite thin films. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 183–188. 10.1016/S0927-0248(02)00344-6 CASWeb of Science®Google Scholar Shangguan W, Zhang M, Yuan J, et al. Synthesis and interlayer modification of RbLaTa2O7. Solar Energy Materials and Solar Cells 1 Mar 2003; 76(2): 201–204. 10.1016/S0927-0248(02)00370-7 CASWeb of Science®Google Scholar Ayouchi R, Martin F, Leinen D, Ramos-Barrado JR. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon. Journal of Crystal Growth Jan 2003; 247(3–4): 497–504. 10.1016/S0022-0248(02)01917-6 CASWeb of Science®Google Scholar Volume11, Issue2March 2003Pages 151-153 ReferencesRelatedInformation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123发布了新的文献求助10
5秒前
Coffey完成签到 ,获得积分10
5秒前
薏仁完成签到 ,获得积分10
9秒前
烟花应助123采纳,获得10
11秒前
宛宛完成签到 ,获得积分10
13秒前
Fiona完成签到 ,获得积分10
17秒前
saddog完成签到 ,获得积分10
30秒前
奋斗的小张完成签到 ,获得积分10
34秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
47秒前
zhilianghui0807完成签到 ,获得积分10
49秒前
阿波罗完成签到 ,获得积分10
50秒前
别具一格完成签到 ,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
淡然的芷荷完成签到 ,获得积分10
1分钟前
是我呀小夏完成签到 ,获得积分10
1分钟前
方琼燕完成签到 ,获得积分10
2分钟前
没用的三轮完成签到,获得积分10
2分钟前
kanong完成签到,获得积分0
2分钟前
tsy完成签到 ,获得积分10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
刘天虎研通完成签到 ,获得积分10
2分钟前
复杂觅海完成签到 ,获得积分10
3分钟前
3分钟前
水母大王发布了新的文献求助10
3分钟前
沉默采波完成签到 ,获得积分10
3分钟前
飞快的冰淇淋完成签到 ,获得积分10
3分钟前
铜豌豆完成签到 ,获得积分10
3分钟前
蝈蝈应助maggiexjl采纳,获得20
4分钟前
细心的如天完成签到 ,获得积分10
4分钟前
YYA完成签到 ,获得积分10
4分钟前
Glitter完成签到 ,获得积分10
4分钟前
isedu完成签到,获得积分10
4分钟前
4分钟前
yinhe完成签到 ,获得积分10
5分钟前
平常山河完成签到 ,获得积分10
5分钟前
hmhu发布了新的文献求助10
5分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268795
求助须知:如何正确求助?哪些是违规求助? 2908247
关于积分的说明 8344979
捐赠科研通 2578573
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490