镓
铟
硒化铜铟镓太阳电池
浸出(土壤学)
二硒醚
铜
材料科学
氧化物
无机化学
硒化物
冶金
化学
硒
薄膜
纳米技术
地质学
土壤水分
土壤科学
作者
Xiang Li,Baozhong Ma,Die Hu,Qinqing Zhao,Yongqiang Chen,Chengyan Wang
标识
DOI:10.1016/j.jclepro.2022.130658
摘要
Copper indium gallium diselenide (CIGS), is a promising commercial thin-film solar cell, and its disposal after scrapping and recycling critical metals has attracted tremendous attention since CIGS can be considered an important type of urban mining. The main phase of spent CIGS is selenide, which is a hazardous contaminant that may have a potential impact on the environment and human body. In our previous study, selenium and copper in spent CIGS separated efficiently, while more scarce metals: indium and gallium were obtained in the form of mixed indium gallium oxide (IGO). Therefore, in this study, the separation and purification of indium and gallium was investigated in detail. The solution chemical behavior shows that the dissolution of indium gallium oxide (IGO) in an alkaline environment was significantly different. Selective alkali leaching is feasible to separate indium and gallium effectively. The process realized 97.26% gallium leaching out, while that of indium was 3.37%. Moreover, the mechanism of the leaching process and the removal of copper impurities were explored, with further purification, indium and gallium were obtained in the form of relatively pure indium oxide (96.04%) and gallium oxide (99.83%), respectively. This study will provide guidance for the recycling of critical metals from secondary waste.
科研通智能强力驱动
Strongly Powered by AbleSci AI