On Automating Hyperparameter Optimization for Deep Learning Applications

机器学习 人工智能 过度拟合 超参数 计算机科学 深度学习 辍学(神经网络) 领域知识 过程(计算) 人工神经网络 操作系统
作者
Nabila Shawki,R. Rodriguez Nunez,Iyad Obeid,J. Picone
标识
DOI:10.1109/spmb52430.2021.9672266
摘要

Given a large amount of data and appropriate hyperparameters, deep learning techniques can deliver impressive performance if several challenging issues with training, such as vanishing gradients, can be overcome. Often, deep learning training techniques produce suboptimal results because the parameter search space is large and populated with many less-than-ideal solutions. Automatic hyperparameter tuning algorithms, known as autotuners, offer an attractive alternative for automating the training process, though they can be computationally expensive. Additionally, autotuners democratize state-of-the-art machine learning approaches and increase the accessibility of deep learning technology to different scientific communities and novice users. In this paper, we investigate the efficacy of autotuning using Keras Tuner on both synthetic and real-world datasets. We show that autotuning performed well on synthetic datasets but was inadequate on real data. As we increase model complexity, autotuning produces errors that are tedious to resolve for those with limited experience in machine learning. Avoiding overfitting, for example, requires extensive knowledge of an algorithm's unique characteristics (e.g., adding dropout layers). Autotuning tools are excellent for creating baseline models on new datasets, but they need more attention to formulate optimal solutions for end-users with less background in deep learning. Because of this, manual tuning based on domain knowledge and experience is still preferred in machine learning because it produces better performance, even though it requires extensive machine learning expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zzzyyyppp完成签到,获得积分10
1秒前
LL完成签到,获得积分10
3秒前
3秒前
7秒前
HN_litchi_King完成签到,获得积分10
9秒前
lJH完成签到,获得积分10
9秒前
用户5063899完成签到,获得积分10
10秒前
Eirrr发布了新的文献求助10
10秒前
13秒前
东山发布了新的文献求助10
14秒前
ll完成签到,获得积分10
14秒前
15秒前
无花果应助qst采纳,获得10
18秒前
syhjxk完成签到,获得积分10
18秒前
风中道罡发布了新的文献求助10
19秒前
Eirrr完成签到,获得积分10
20秒前
20秒前
惠归尘发布了新的文献求助10
22秒前
搜集达人应助东山采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
无限的山水完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
江三村完成签到 ,获得积分10
25秒前
舌T发布了新的文献求助10
25秒前
ding应助缓慢冬天采纳,获得10
25秒前
爱吃锅巴肉片完成签到,获得积分10
26秒前
wuliww发布了新的文献求助10
27秒前
Horizon发布了新的文献求助30
29秒前
yznfly应助Simba采纳,获得30
29秒前
Micah发布了新的文献求助10
29秒前
30秒前
ChenChen发布了新的文献求助10
30秒前
哲哲哲完成签到 ,获得积分10
30秒前
31秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150