On Automating Hyperparameter Optimization for Deep Learning Applications

机器学习 人工智能 过度拟合 超参数 计算机科学 深度学习 辍学(神经网络) 领域知识 过程(计算) 人工神经网络 操作系统
作者
Nabila Shawki,R. Rodriguez Nunez,Iyad Obeid,J. Picone
标识
DOI:10.1109/spmb52430.2021.9672266
摘要

Given a large amount of data and appropriate hyperparameters, deep learning techniques can deliver impressive performance if several challenging issues with training, such as vanishing gradients, can be overcome. Often, deep learning training techniques produce suboptimal results because the parameter search space is large and populated with many less-than-ideal solutions. Automatic hyperparameter tuning algorithms, known as autotuners, offer an attractive alternative for automating the training process, though they can be computationally expensive. Additionally, autotuners democratize state-of-the-art machine learning approaches and increase the accessibility of deep learning technology to different scientific communities and novice users. In this paper, we investigate the efficacy of autotuning using Keras Tuner on both synthetic and real-world datasets. We show that autotuning performed well on synthetic datasets but was inadequate on real data. As we increase model complexity, autotuning produces errors that are tedious to resolve for those with limited experience in machine learning. Avoiding overfitting, for example, requires extensive knowledge of an algorithm's unique characteristics (e.g., adding dropout layers). Autotuning tools are excellent for creating baseline models on new datasets, but they need more attention to formulate optimal solutions for end-users with less background in deep learning. Because of this, manual tuning based on domain knowledge and experience is still preferred in machine learning because it produces better performance, even though it requires extensive machine learning expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助hd采纳,获得10
刚刚
jiangchuansm完成签到,获得积分10
1秒前
3秒前
kiko发布了新的文献求助10
3秒前
情怀应助不倦采纳,获得10
4秒前
4秒前
丘丘给丘丘的求助进行了留言
5秒前
larsy完成签到 ,获得积分10
5秒前
星辰大海应助江睿曦采纳,获得10
5秒前
浮游应助Petrichor采纳,获得10
6秒前
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
轻松元柏完成签到,获得积分20
10秒前
你爱我我爱你完成签到,获得积分10
12秒前
lulu发布了新的文献求助10
12秒前
DrCuiTianjin完成签到 ,获得积分0
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
kiko完成签到,获得积分10
14秒前
Wrr发布了新的文献求助10
14秒前
汉天完成签到,获得积分10
15秒前
轻松元柏发布了新的文献求助10
16秒前
skyelee完成签到,获得积分10
16秒前
18秒前
20秒前
我是老大应助硝基采纳,获得10
21秒前
22秒前
23秒前
石头完成签到,获得积分10
23秒前
23秒前
24秒前
Orange应助有意义采纳,获得10
25秒前
25秒前
hgnghn完成签到 ,获得积分10
26秒前
好滴捏发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466