SLRRSC: Single-Cell Type Recognition Method Based on Similarity and Graph Regularization Constraints

聚类分析 模式识别(心理学) 人工智能 秩(图论) 计算机科学 光谱聚类 低秩近似 正规化(语言学) 矩阵分解 相似性(几何) 约束(计算机辅助设计) 数学 数据挖掘 特征向量 图像(数学) 组合数学 数学分析 物理 几何学 量子力学 汉克尔矩阵
作者
Nana Zhang,Jin‐Xing Liu,Chun-Hou Zheng,Juan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 3556-3566 被引量:9
标识
DOI:10.1109/jbhi.2022.3148286
摘要

Single-cell clustering is a crucial task of scRNA-seq analysis, which reveals the natural grouping of cells. However, due to the high noise and high dimension in scRNA-seq data, how to effectively and accurately identify cell types from a great quantity of cell mixtures is still a challenge. Considering this, in this paper, we propose a novel subspace clustering algorithm termed SLRRSC. This method is developed based on the low-rank representation model, and it aims to capture the global and local properties inherent in data. In order to make the LRR matrix describe the spatial relationship of samples more accurately, we introduce the manifold-based graph regularization and similarity constraint into the LRR-based method SLRRSC. The graph regularization can preserve the local geometric structure of the data in low-rank decomposition, so that the low-rank representation matrix contains more local structure information. By imposing similarity constraint on the low-rank matrix, the similarity information between sample pairs is further introduced into the SLRRSC model to improve the learning ability of low-rank method for global structure. At the same time, the similarity constraint makes the low-rank representation matrix symmetric, which makes it better interpretable in clustering application. We compare the effectiveness of the SLRRSC algorithm with other single-cell clustering methods on simulated data and real single-cell datasets. The results show that this method can obtain more accurate sample similarity matrix and effectively solve the problem of cell type recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
酷酷巧蟹完成签到,获得积分10
1秒前
1秒前
大个应助wang采纳,获得10
2秒前
WATQ完成签到,获得积分10
2秒前
泠泠月上完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
weiling完成签到,获得积分10
2秒前
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
2秒前
循环发布了新的文献求助10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
Xcj发布了新的文献求助10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
吨吨发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
zzz发布了新的文献求助30
3秒前
慕青应助科研通管家采纳,获得10
3秒前
LewisAcid应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095