深度学习
计算机科学
人工智能
领域(数学)
数据科学
范围(计算机科学)
数字化
自动化
工程类
计算机视觉
数学
机械工程
程序设计语言
纯数学
作者
Jintao Li,Jie Chen,Hua Bai,Haiwei Wang,Shiping Hao,Yang Ding,Bo Peng,Jing Zhang,Lin Li,Wei Huang
出处
期刊:Research
[AAAS00]
日期:2022-01-01
卷期号:2022
被引量:25
标识
DOI:10.34133/2022/9869518
摘要
Microfluidic-based organs-on-chips (OoCs) are a rapidly developing technology in biomedical and chemical research and have emerged as one of the most advanced and promising in vitro models. The miniaturization, stimulated tissue mechanical forces, and microenvironment of OoCs offer unique properties for biomedical applications. However, the large amount of data generated by the high parallelization of OoC systems has grown far beyond the scope of manual analysis by researchers with biomedical backgrounds. Deep learning, an emerging area of research in the field of machine learning, can automatically mine the inherent characteristics and laws of “big data” and has achieved remarkable applications in computer vision, speech recognition, and natural language processing. The integration of deep learning in OoCs is an emerging field that holds enormous potential for drug development, disease modeling, and personalized medicine. This review briefly describes the basic concepts and mechanisms of microfluidics and deep learning and summarizes their successful integration. We then analyze the combination of OoCs and deep learning for image digitization, data analysis, and automation. Finally, the problems faced in current applications are discussed, and future perspectives and suggestions are provided to further strengthen this integration.
科研通智能强力驱动
Strongly Powered by AbleSci AI