亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Localization of Hotspots from Lock-in Thermography Images for Failure Analysis

热点(地质) 计算机科学 人工智能 像素 聚类分析 计算机视觉 热成像 模式识别(心理学) 地质学 物理 地球物理学 光学 红外线的
作者
Rui Zhen Tan,Neelakantam Venkatarayalu,Zhongqiang Ding,Indriyati Atmosukarto,A.B. Premkumar,Kyu Kyu Thinn,Tict Eng Teh,Ming Xue
标识
DOI:10.1109/eptc53413.2021.9663910
摘要

Lock-in Thermography (LIT) is a commonly used non-destructive technique in the failure analysis (FA) of integrated circuits. The presence of defects changes the heat flow, resulting in the formation of thermals hotspots that are captured by the LIT imaging system. Currently, the identification of the hotspots requires knowledge of an experienced FA specialist, making the identification time consuming and prone to human error. In this paper, an algorithm has been developed to automate the process of hotspot localization by training on existing annotated images. In the annotated images, thermal signal, represented by colored pixels obtained through the mapping of scalar values onto a jet color mapping, were overlaid with gray X-ray or topological background. The algorithm was able to identify the thermal signal as colored pixels from the gray background. It was also able to identify diffused or fragmented hotspot signal as a single hotspot through Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and separate the true hotspot from spurious noise through noise removal and ranking of candidate hotspots by size. The algorithm was applied on 103 images. For 86 images, the hotspots were correctly identified as the only hotspots in the images. The correct hotspots were identified along with other incorrect hotspots in 11 images. The incorrectly identified hotspots were not removed during the noise removal and hotspots ranking steps as they were larger than the size threshold and comparable in size to the actual hotspots. For the last 6 images, the actual hotspots were not identified, and incorrect hotspots were reported instead. The incorrectly identified hotspots were often larger than the actual hotspots and usually found outside of the package region. In the future, identification of hotspots localization could be improved by determining region of interest within the images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Artin完成签到,获得积分10
15秒前
21秒前
上官若男应助科研通管家采纳,获得10
44秒前
是木易呀完成签到,获得积分10
52秒前
lanxinge完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
leisome完成签到 ,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
George完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
uwe完成签到,获得积分10
3分钟前
3分钟前
amy完成签到,获得积分10
3分钟前
李健应助amy采纳,获得10
3分钟前
顺利豆豆完成签到,获得积分10
3分钟前
wbs13521完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助10
4分钟前
kingkong发布了新的文献求助10
4分钟前
4分钟前
kingkong完成签到,获得积分10
4分钟前
慕青应助kingkong采纳,获得10
5分钟前
为你钟情完成签到 ,获得积分10
5分钟前
葱饼完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
橘橘橘子皮完成签到 ,获得积分10
5分钟前
文风杰采发布了新的文献求助10
6分钟前
6分钟前
marshyyy发布了新的文献求助10
6分钟前
听话的靖柏完成签到 ,获得积分10
6分钟前
6分钟前
Akim应助marshyyy采纳,获得10
6分钟前
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
研友_VZG7GZ应助俊逸战斗机采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360076
求助须知:如何正确求助?哪些是违规求助? 2982627
关于积分的说明 8704598
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459035
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421