Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis

糖尿病 医学 妊娠期糖尿病 计算机科学 怀孕 人工智能 机器学习 内分泌学 妊娠期 遗传学 生物
作者
Zheqing Zhang,Luqian Yang,Wentao Han,Yaoyu Wu,Linhui Zhang,Chun Gao,Kui Jiang,Yun Liu,Huiqun Wu
出处
期刊:Journal of Medical Internet Research 卷期号:24 (3): e26634-e26634 被引量:50
标识
DOI:10.2196/26634
摘要

Gestational diabetes mellitus (GDM) is a common endocrine metabolic disease, involving a carbohydrate intolerance of variable severity during pregnancy. The incidence of GDM-related complications and adverse pregnancy outcomes has declined, in part, due to early screening. Machine learning (ML) models are increasingly used to identify risk factors and enable the early prediction of GDM.The aim of this study was to perform a meta-analysis and comparison of published prognostic models for predicting the risk of GDM and identify predictors applicable to the models.Four reliable electronic databases were searched for studies that developed ML prediction models for GDM in the general population instead of among high-risk groups only. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias of the ML models. The Meta-DiSc software program (version 1.4) was used to perform the meta-analysis and determination of heterogeneity. To limit the influence of heterogeneity, we also performed sensitivity analyses, a meta-regression, and subgroup analysis.A total of 25 studies that included women older than 18 years without a history of vital disease were analyzed. The pooled area under the receiver operating characteristic curve (AUROC) for ML models predicting GDM was 0.8492; the pooled sensitivity was 0.69 (95% CI 0.68-0.69; P<.001; I2=99.6%) and the pooled specificity was 0.75 (95% CI 0.75-0.75; P<.001; I2=100%). As one of the most commonly employed ML methods, logistic regression achieved an overall pooled AUROC of 0.8151, while non-logistic regression models performed better, with an overall pooled AUROC of 0.8891. Additionally, maternal age, family history of diabetes, BMI, and fasting blood glucose were the four most commonly used features of models established by the various feature selection methods.Compared to current screening strategies, ML methods are attractive for predicting GDM. To expand their use, the importance of quality assessments and unified diagnostic criteria should be further emphasized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璇璇完成签到 ,获得积分10
刚刚
完美世界应助YY采纳,获得10
1秒前
小刘爱读文献完成签到 ,获得积分10
2秒前
一行白鹭上青天完成签到 ,获得积分10
4秒前
科研顺利完成签到 ,获得积分10
5秒前
Tree_完成签到 ,获得积分10
12秒前
禾页完成签到 ,获得积分10
14秒前
sino-ft发布了新的文献求助10
16秒前
海荣完成签到,获得积分10
16秒前
chenxilulu完成签到,获得积分10
17秒前
xkhxh完成签到 ,获得积分10
17秒前
迅速的巧曼完成签到 ,获得积分10
20秒前
ning_qing完成签到 ,获得积分10
21秒前
太阳完成签到 ,获得积分10
25秒前
明亮依琴完成签到,获得积分10
27秒前
Ashao完成签到,获得积分10
28秒前
steve完成签到,获得积分0
29秒前
陆黑暗完成签到 ,获得积分10
29秒前
liuzhigang完成签到 ,获得积分10
31秒前
浮尘完成签到 ,获得积分0
31秒前
温馨完成签到 ,获得积分10
32秒前
fusheng完成签到 ,获得积分10
32秒前
皮蛋努力科研完成签到 ,获得积分10
33秒前
小脸红扑扑完成签到 ,获得积分10
34秒前
大可完成签到 ,获得积分10
36秒前
38秒前
39秒前
wxnice完成签到,获得积分10
40秒前
kk完成签到,获得积分10
40秒前
浮生完成签到 ,获得积分10
41秒前
41秒前
YC发布了新的文献求助20
43秒前
44秒前
LuciusHe完成签到,获得积分10
47秒前
美嘉美完成签到 ,获得积分10
47秒前
YY发布了新的文献求助10
48秒前
重要的惜萍完成签到,获得积分10
49秒前
初昀杭完成签到 ,获得积分10
51秒前
小young完成签到 ,获得积分10
51秒前
老迟到的土豆完成签到 ,获得积分10
52秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555892
求助须知:如何正确求助?哪些是违规求助? 3131483
关于积分的说明 9391191
捐赠科研通 2831179
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890