自动化
能力(人力资源)
计算机科学
可靠性(半导体)
探索性因素分析
心理学
一致性(知识库)
知识管理
社会心理学
应用心理学
人工智能
结构方程建模
机器学习
工程类
机械工程
功率(物理)
物理
量子力学
标识
DOI:10.31234/osf.io/nfc45
摘要
The increasing number of interactions with automated systems has sparked the interest of researchers in trust in automation because it predicts not only whether but also how an operator interacts with an automation. In this work, a theoretical model of trust in automation is established and the development and evaluation of a corresponding questionnaire (Trust in Automation, TiA) are described. Building on the model of organizational trust by Mayer, Davis, and Schoorman (1995) and the theoretical account by Lee and See (2004), a model for trust in automation containing six underlying dimensions was established. Following a deductive approach, an initial set of 57 items was generated. In a first online study, these items were analyzed and based on the criteria item difficulty, standard deviation, item-total correlation, internal consistency, overlap with other items in content, and response quote, 40 items were eliminated and two scales were merged, leaving six scales (Reliability/Competence, Understandability/Predictability, Propensity to Trust, Intention of Developers, Familiarity, and Trust in Automation) containing a total of 19 items. The internal structure of the resulting questionnaire was analyzed in a subsequent second online study by means of an exploratory factor analysis. The results show sufficient preliminary evidence for the proposed factor structure and demonstrate that further pursuit of the model is reasonable but certain revisions may be necessary. The calculated omega coefficients indicated good to excellent reliability for all scales. The results also provide evidence for the questionnaire’s criterion validity: Consistent with the expectations, an unreliable automated driving system received lower trust ratings as a reliably functioning system. In a subsequent empirical driving simulator study, trust ratings could predict reliance on an automated driving system and monitoring in form of gaze behavior. Possible steps for revisions are discussed and recommendations for the application of the questionnaire are given.
科研通智能强力驱动
Strongly Powered by AbleSci AI