BETA: a comprehensive benchmark for computational drug–target prediction

水准点(测量) 计算机科学 机器学习 药物重新定位 人工智能 数据挖掘 重新调整用途 选择(遗传算法) 洗牌 药品 生物 大地测量学 生态学 药理学 程序设计语言 地理
作者
Nansu Zong,Ning Li,Andrew Wen,Victoria K. Ngo,Yue Yu,Ming Huang,Shaika Chowdhury,Chao Jiang,Sunyang Fu,Richard M. Weinshilboum,Guoqian Jiang,Lawrence Hunter,Hongfang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac199
摘要

Abstract Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven发布了新的文献求助30
1秒前
周墨完成签到 ,获得积分10
1秒前
2秒前
AN应助笨笨西装采纳,获得30
2秒前
别不开星发布了新的文献求助10
3秒前
面向阳光应助jl采纳,获得20
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
LW完成签到,获得积分10
5秒前
内向以彤完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
上官若男应助Macaco采纳,获得10
8秒前
9秒前
xiaopei完成签到,获得积分10
10秒前
kkt发布了新的文献求助10
11秒前
充电宝应助星空物语采纳,获得10
12秒前
12秒前
小李完成签到 ,获得积分10
12秒前
稳稳发布了新的文献求助10
13秒前
Lyy发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
Owen应助儒雅惜海采纳,获得10
16秒前
17秒前
淡定的竺发布了新的文献求助50
18秒前
18秒前
嘟噜完成签到 ,获得积分10
18秒前
19秒前
大模型应助Macaco采纳,获得10
20秒前
打打应助seven采纳,获得10
20秒前
20秒前
20秒前
BowieHuang应助忧心的幻然采纳,获得10
21秒前
21秒前
wyr发布了新的文献求助10
21秒前
hydenbear应助queer采纳,获得10
21秒前
Hannah17完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577902
求助须知:如何正确求助?哪些是违规求助? 4662960
关于积分的说明 14743852
捐赠科研通 4603592
什么是DOI,文献DOI怎么找? 2526534
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465642