BETA: a comprehensive benchmark for computational drug–target prediction

水准点(测量) 计算机科学 机器学习 药物重新定位 人工智能 数据挖掘 重新调整用途 选择(遗传算法) 洗牌 药品 生物 大地测量学 生态学 药理学 程序设计语言 地理
作者
Nansu Zong,Ning Li,Andrew Wen,Victoria K. Ngo,Yue Yu,Ming Huang,Shaika Chowdhury,Chao Jiang,Sunyang Fu,Richard M. Weinshilboum,Guoqian Jiang,Lawrence Hunter,Hongfang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac199
摘要

Abstract Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无需多言完成签到,获得积分10
2秒前
3秒前
3秒前
孙成成发布了新的文献求助10
3秒前
陈文学发布了新的文献求助10
4秒前
ji完成签到,获得积分10
4秒前
5秒前
李胜发布了新的文献求助10
8秒前
8秒前
9秒前
李昕123发布了新的文献求助10
11秒前
13秒前
13秒前
丘比特应助科研通管家采纳,获得10
15秒前
arabidopsis应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
16秒前
16秒前
想写文章的绿完成签到 ,获得积分10
16秒前
D_发布了新的文献求助10
16秒前
蛋黄啵啵完成签到,获得积分10
18秒前
生动谷蓝完成签到,获得积分10
18秒前
20秒前
勤恳易真发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975458
求助须知:如何正确求助?哪些是违规求助? 3519866
关于积分的说明 11199996
捐赠科研通 3256213
什么是DOI,文献DOI怎么找? 1798133
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305