BETA: a comprehensive benchmark for computational drug–target prediction

水准点(测量) 计算机科学 机器学习 药物重新定位 人工智能 数据挖掘 重新调整用途 选择(遗传算法) 洗牌 药品 生物 大地测量学 生态学 药理学 程序设计语言 地理
作者
Nansu Zong,Ning Li,Andrew Wen,Victoria K. Ngo,Yue Yu,Ming Huang,Shaika Chowdhury,Chao Jiang,Sunyang Fu,Richard M. Weinshilboum,Guoqian Jiang,Lawrence Hunter,Hongfang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac199
摘要

Abstract Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hush完成签到,获得积分10
刚刚
刚刚
ffliu发布了新的文献求助20
1秒前
jia发布了新的文献求助10
1秒前
nini发布了新的文献求助10
1秒前
薯片发布了新的文献求助10
1秒前
思源应助不如吃茶去采纳,获得10
3秒前
taotao发布了新的文献求助10
3秒前
LL关注了科研通微信公众号
4秒前
干净的马里奥完成签到,获得积分10
4秒前
CodeCraft应助化学喵采纳,获得10
4秒前
青橘短衫完成签到,获得积分10
5秒前
5秒前
共享精神应助胡图图233采纳,获得10
6秒前
科目三应助张泽芝采纳,获得10
7秒前
以光之名完成签到,获得积分10
7秒前
蛋堡发布了新的文献求助10
8秒前
8秒前
呼大人关注了科研通微信公众号
9秒前
oon完成签到,获得积分10
9秒前
depurge完成签到,获得积分10
9秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
安南应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得20
11秒前
FashionBoy应助结实的凉面采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960247
求助须知:如何正确求助?哪些是违规求助? 4220767
关于积分的说明 13144216
捐赠科研通 4004605
什么是DOI,文献DOI怎么找? 2191552
邀请新用户注册赠送积分活动 1205753
关于科研通互助平台的介绍 1116915