BETA: a comprehensive benchmark for computational drug–target prediction

水准点(测量) 计算机科学 机器学习 药物重新定位 人工智能 数据挖掘 重新调整用途 选择(遗传算法) 洗牌 药品 生物 大地测量学 药理学 地理 程序设计语言 生态学
作者
Nansu Zong,Ning Li,Andrew Wen,Victoria K. Ngo,Yue Yu,Ming Huang,Shaika Chowdhury,Chao Jiang,Sunyang Fu,Richard M. Weinshilboum,Guoqian Jiang,Lawrence Hunter,Hongfang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac199
摘要

Abstract Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
细心飞鸟完成签到 ,获得积分10
4秒前
丘比特应助飘逸小笼包采纳,获得30
5秒前
5秒前
6秒前
7秒前
vivienwant发布了新的文献求助10
7秒前
7秒前
辛勤夜柳发布了新的文献求助10
8秒前
felix发布了新的文献求助10
10秒前
月初完成签到 ,获得积分10
10秒前
很酷的妞子完成签到 ,获得积分10
11秒前
良辰完成签到,获得积分10
12秒前
儒雅老太发布了新的文献求助10
12秒前
kenna123发布了新的文献求助80
12秒前
丁茸茸完成签到,获得积分10
13秒前
13秒前
无花果应助felix采纳,获得10
15秒前
能干砖家完成签到,获得积分10
15秒前
nil发布了新的文献求助10
19秒前
珍惜完成签到,获得积分10
19秒前
oceanao应助nn采纳,获得10
20秒前
科研通AI2S应助xu采纳,获得10
21秒前
abjz完成签到,获得积分10
22秒前
旋转木马9个完成签到 ,获得积分10
23秒前
酷波er应助kenna123采纳,获得80
24秒前
昊昊完成签到,获得积分10
24秒前
27秒前
27秒前
28秒前
马婷婷完成签到,获得积分20
30秒前
橙子完成签到 ,获得积分10
31秒前
米布发布了新的文献求助10
32秒前
33秒前
h41692011发布了新的文献求助10
33秒前
Louie~发布了新的文献求助10
33秒前
shuitian998完成签到,获得积分10
34秒前
乐之完成签到 ,获得积分10
34秒前
清风明月完成签到,获得积分10
35秒前
大熊发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814837
关于积分的说明 7906792
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228