Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis

生物标志物 骨关节炎 小桶 逻辑回归 计算生物学 疾病 基因 生物信息学 医学 基因表达 肿瘤科 生物 病理 基因本体论 内科学 遗传学 替代医学
作者
Yudong Zhao,Xia Yu,Gaoyan Kuang,Ji-hui Cao,Shen Fu,Zhu Ming-shuang
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-21 被引量:1
标识
DOI:10.1155/2022/9043300
摘要

Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new biomarkers of KOA to improve the accuracy of diagnosis and treatment.GSE98918 and GSE51588 were downloaded from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457.In total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better than that of a single clinical trait.CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of clinical treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
热情的水杯完成签到,获得积分10
2秒前
cqcc完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
洗衣液完成签到,获得积分10
4秒前
zyy发布了新的文献求助10
5秒前
苏兜兜完成签到,获得积分10
6秒前
7秒前
吴未完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
小刘不笨发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
BBOOOOOO发布了新的文献求助10
9秒前
Vary发布了新的文献求助10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
安生发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
微糖应助科研通管家采纳,获得10
9秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
微糖应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Ky_Mac应助科研通管家采纳,获得50
10秒前
万能图书馆应助小正采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
微糖应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093