材料科学
膜
化学工程
纳米复合材料
界面聚合
纳滤
聚砜
薄膜复合膜
表面改性
聚酰胺
复合数
复合材料
纳米技术
反渗透
聚合物
化学
单体
工程类
生物化学
作者
Tin Le,Elnaz Jamshidi,Majid Beidaghi,Milad Rabbani Esfahani
标识
DOI:10.1021/acsami.2c03796
摘要
Due to adverse health effects and the broad sources of per- and polyfluoroakyl substances (PFAS), PFAS removal is a critical research area in water purification. We demonstrate the functionalization of thin-film composite (TFC) hollow fiber nanofiltration (HFN) membranes by MXene nanosheets during the interfacial polymerization (IP) process for enhanced removal of perfluorooctane sulfonic acid (PFOS) from water. A MXene-polyamide (PA) selective layer was fabricated on top of a polysulfone (PSF) hollow fiber support via IP of trimesoyl chloride (TMC) and a mixture of piperazine (PIP) and MXene nanosheets to form MXene-PA thin-film nanocomposite (TFN) membranes. Incorporating MXene nanosheets during the IP process tuned the morphology and negative surface charge of the selective layer, resulting in enhanced PFOS rejection from 72% (bare TFC) to more than 96% (0.025 wt % MXene TFN), while the water permeability was also increased from 13.19 (bare TFC) to 29.26 LMH/bar (0.025 wt % MXene TFN). Our results demonstrate that both electrostatic interaction and size exclusion are the main factors governing the PFOS rejection, and both are determined by PA selective layer structural and chemical properties. The lamella structure and interlayer of MXene nanosheets inside the PA layer provided different transport mechanisms for water, ions, and PFAS molecules, resulting in enhanced water permeability and PFAS rejection due to traveling through the membrane by both diffusions through the PA layer and the MXene intralayer channels. MXene nanosheets showed very promising capability as a 2D additive for tuning the structural and chemical properties of the PA layer at the permeability-rejection tradeoff.
科研通智能强力驱动
Strongly Powered by AbleSci AI