Development of an in-situ detector for classification and regression of dissolved gases in liquid waste with application to wastewater monitoring

废水 探测器 硫化氢 污水处理 环境科学 水溶液 化学 计算机科学 环境工程 电信 物理化学 有机化学 硫黄
作者
Ali Davoodabadi Farahani,Joel Hunter,Graham McIntosh,Adithya Ravishankara,Emily Earl,Sajjad Janfaza,Nishat Tasnim,Paul Kadota,Mina Hoorfar
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:367: 132027-132027
标识
DOI:10.1016/j.snb.2022.132027
摘要

Monitoring volatile compounds in sewer systems is of high importance due to the toxic and corrosive nature of various nuisance chemicals generated such as hydrogen sulfide (H 2 S). Hotspot monitoring facilitates identification of the location of the generated H 2 S, and thereby targeted treatment can be applied which eventually minimizes the use of chemicals and lowers the environmental effect within the sewer system. Here, we developed a portable detector that automatically extracts and delivers sewer contents to a microfluidic-based detector, fabricated by a selective microchannel embedded with a metal oxide semiconductor (MOS) sensor. Using a wide concentration range of H 2 S and ammonia (NH 3 ) dissolved in water (i.e., two components to which the MOS sensor has potential cross-selectivity), a database for a machine learning model was developed. The model could classify between NH 3 and H 2 S with 96.4% and 96.9% overall recall in separate and mixture aqueous solutions, respectively. Overall regression precisions of 84.6% and 88.8% were obtained in separate and mixture aqueous solutions, respectively. The developed setup was used in a field test (at Annacis Island (Delta, BC)) wastewater treatment plant where the results showed that the device could identify H 2 S and NH 3 in raw influent samples and measuring the concentrations via regression with 94.6% and 83.5% overall recall and precision for H 2 S and NH 3 , respectively. These results demonstrate the promise of the developed automated detector and machine-learning data processing methodology for applications in in-situ wastewater monitoring or treatment through the detection of H 2 S hotspots for targeted mitigation efforts. • An automated microfluidic-based gas detector identifies and measures hydrogen sulfide and ammonia in raw influent. • A machine learning model is used to classify the presence and the amount of each gas in a liquid wastewater sample. • The automated device facilitates the detection of hotspots and reduces the treatment cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鞠佩奇发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
6秒前
6秒前
舒适绮完成签到,获得积分10
7秒前
7秒前
xiutang发布了新的文献求助30
7秒前
小鞠佩奇完成签到,获得积分10
7秒前
7秒前
9秒前
11秒前
yuwen发布了新的文献求助10
11秒前
粥粥完成签到,获得积分10
13秒前
俊俊发布了新的文献求助10
13秒前
14秒前
武1完成签到,获得积分20
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
走着完成签到,获得积分10
19秒前
20秒前
cc发布了新的文献求助10
21秒前
知不足而奋进完成签到,获得积分20
21秒前
顾矜应助俊俊采纳,获得10
21秒前
喽喽发布了新的文献求助10
22秒前
Ww发布了新的文献求助10
23秒前
redking发布了新的文献求助10
23秒前
学霸宇大王完成签到 ,获得积分10
23秒前
24秒前
哈哈hehe发布了新的文献求助20
24秒前
木鸽子发布了新的文献求助10
25秒前
舒适绮发布了新的文献求助10
25秒前
26秒前
26秒前
qwaz发布了新的文献求助50
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517