Development of an in-situ detector for classification and regression of dissolved gases in liquid waste with application to wastewater monitoring

废水 探测器 硫化氢 污水处理 环境科学 水溶液 化学 计算机科学 环境工程 电信 物理化学 有机化学 硫黄
作者
Ali Davoodabadi Farahani,Joel Hunter,Graham McIntosh,Adithya Ravishankara,Emily Earl,Sajjad Janfaza,Nishat Tasnim,Paul Kadota,Mina Hoorfar
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:367: 132027-132027
标识
DOI:10.1016/j.snb.2022.132027
摘要

Monitoring volatile compounds in sewer systems is of high importance due to the toxic and corrosive nature of various nuisance chemicals generated such as hydrogen sulfide (H 2 S). Hotspot monitoring facilitates identification of the location of the generated H 2 S, and thereby targeted treatment can be applied which eventually minimizes the use of chemicals and lowers the environmental effect within the sewer system. Here, we developed a portable detector that automatically extracts and delivers sewer contents to a microfluidic-based detector, fabricated by a selective microchannel embedded with a metal oxide semiconductor (MOS) sensor. Using a wide concentration range of H 2 S and ammonia (NH 3 ) dissolved in water (i.e., two components to which the MOS sensor has potential cross-selectivity), a database for a machine learning model was developed. The model could classify between NH 3 and H 2 S with 96.4% and 96.9% overall recall in separate and mixture aqueous solutions, respectively. Overall regression precisions of 84.6% and 88.8% were obtained in separate and mixture aqueous solutions, respectively. The developed setup was used in a field test (at Annacis Island (Delta, BC)) wastewater treatment plant where the results showed that the device could identify H 2 S and NH 3 in raw influent samples and measuring the concentrations via regression with 94.6% and 83.5% overall recall and precision for H 2 S and NH 3 , respectively. These results demonstrate the promise of the developed automated detector and machine-learning data processing methodology for applications in in-situ wastewater monitoring or treatment through the detection of H 2 S hotspots for targeted mitigation efforts. • An automated microfluidic-based gas detector identifies and measures hydrogen sulfide and ammonia in raw influent. • A machine learning model is used to classify the presence and the amount of each gas in a liquid wastewater sample. • The automated device facilitates the detection of hotspots and reduces the treatment cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒洋洋大王完成签到,获得积分20
刚刚
怡然芷蝶完成签到,获得积分10
1秒前
1秒前
丘比特应助乐安采纳,获得30
1秒前
慕青应助字母哥采纳,获得10
2秒前
4秒前
4秒前
butterfly0发布了新的文献求助20
5秒前
肖玉娇完成签到,获得积分10
7秒前
香蕉觅云应助渴望者采纳,获得10
7秒前
xu完成签到,获得积分20
8秒前
8秒前
科目三应助yeyeye采纳,获得10
9秒前
9秒前
宓不评发布了新的文献求助10
11秒前
11秒前
13秒前
科研通AI2S应助一口南瓜饼采纳,获得10
13秒前
啊哒吸哇发布了新的文献求助10
14秒前
14秒前
有你就足够完成签到,获得积分10
16秒前
max关闭了max文献求助
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
Doctor_jie完成签到 ,获得积分10
20秒前
20秒前
SUN发布了新的文献求助10
20秒前
尉迟靖仇发布了新的文献求助10
21秒前
22秒前
qiushui发布了新的文献求助10
23秒前
平硕完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
26秒前
小个白完成签到,获得积分10
27秒前
上官若男应助zz采纳,获得10
27秒前
yeyeye完成签到,获得积分20
27秒前
浮游应助achulw采纳,获得10
28秒前
忧郁丹彤发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258