Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction

电池(电) 弹道 计算机科学 锂离子电池 过程(计算) 人工智能 机器学习 功率(物理) 天文 量子力学 操作系统 物理
作者
Zhao Zhou,Yonggang Liu,Mingxing You,Rui Xiong,Xuan Zhou
标识
DOI:10.1016/j.geits.2022.100008
摘要

With the wide application of the LFP lithium-ion batteries, more attention is paid to the battery life and future aging behaviors as the safety and performance of the battery are guaranteed by accurate battery aging monitoring. In recent years, long-term aging trajectory prediction of the lithium-ion battery is always a challenge due to its complex nonlinear aging behaviors especially the aging behaviors in the two aging stages are quite different when the battery experiences the two-stage aging process under fast-charging conditions. Thus, it is harder to achieve accurate long-term aging trajectory prediction of the LFP lithium-ion batteries on the condition of the two-stage aging process. To address it, a novel transfer learning strategy combined with the cycle life prediction technology is presented in this paper. Specifically, a new cycle life prediction method is proposed based on feature extraction and deep learning technology and achieves accurate cycle life prediction. The transfer learning is started by developing a base aging model offline to learn the information of the two-stage aging process. Then, taking the predicted cycle life as its prior information, the Bayesian model migration technology is employed to predict the aging trajectory accurately, and the uncertainty of the aging trajectory is quantified. Two batches of the battery datasets are used for performance evaluation and comparison with two benchmarks. It is novel to combine the cycle life prediction and transfer learning technique to achieve accurate two-stage aging trajectory prediction with only a few data available (first 30%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
自自自在完成签到,获得积分10
刚刚
Zeal发布了新的文献求助10
1秒前
mm完成签到,获得积分10
2秒前
wc完成签到,获得积分20
2秒前
2秒前
简单点完成签到 ,获得积分10
4秒前
wtg发布了新的文献求助10
4秒前
粘粘1234完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
Jonny发布了新的文献求助10
5秒前
小胖完成签到,获得积分10
5秒前
笑点低的凝阳完成签到,获得积分10
6秒前
研友_想想发布了新的文献求助10
6秒前
完美世界应助张达采纳,获得10
6秒前
感动城发布了新的文献求助10
7秒前
脑洞疼应助briliian采纳,获得10
7秒前
zz完成签到,获得积分10
8秒前
WHEN完成签到 ,获得积分10
8秒前
飘逸的麦片完成签到,获得积分10
9秒前
10秒前
11秒前
苏西坡完成签到 ,获得积分10
11秒前
12秒前
畅快的饼干完成签到 ,获得积分10
12秒前
12秒前
tangli完成签到 ,获得积分10
12秒前
wtg完成签到,获得积分10
13秒前
丘比特应助liuziyu采纳,获得50
13秒前
13秒前
13秒前
zw发布了新的文献求助10
13秒前
小徐发布了新的文献求助10
14秒前
14秒前
糖果完成签到,获得积分10
14秒前
15秒前
wanglei发布了新的文献求助10
15秒前
通~发布了新的文献求助10
15秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418730
求助须知:如何正确求助?哪些是违规求助? 3020170
关于积分的说明 8891341
捐赠科研通 2707637
什么是DOI,文献DOI怎么找? 1484879
科研通“疑难数据库(出版商)”最低求助积分说明 686213
邀请新用户注册赠送积分活动 681404