清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SEEG-Net: An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy

立体脑电图 可解释性 人工智能 计算机科学 癫痫 机器学习 卷积神经网络 模式识别(心理学) 癫痫外科 心理学 神经科学
作者
Yiping Wang,Yanfeng Yang,Gongpeng Cao,Jinjie Guo,Penghu Wei,Tao Feng,Yang Dai,Jinguo Huang,Guixia Kang,Guoguang Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:148: 105703-105703 被引量:9
标识
DOI:10.1016/j.compbiomed.2022.105703
摘要

Precise preoperative evaluation of drug-resistant epilepsy (DRE) requires accurate analysis of invasive stereoelectroencephalography (SEEG). With the tremendous breakthrough of Artificial intelligence (AI), previous studies can help clinical experts to identify pathological activities automatically. However, they still face limitations when applied in real-world clinical DRE scenarios, such as sample imbalance, cross-subject domain shift, and poor interpretability. Our objective is to propose a model that can address the above problems and realizes high-sensitivity SEEG pathological activity detection based on two real clinical datasets.Our proposed innovative and effective SEEG-Net introduces a multiscale convolutional neural network (MSCNN) to increase the receptive field of the model, and to learn SEEG multiple frequency domain features, local and global features. Moreover, we designed a novel focal domain generalization loss (FDG-loss) function to enhance the target sample weight and to learn domain consistency features. Furthermore, to enhance the interpretability and flexibility of SEEG-Net, we explain SEEG-Net from multiple perspectives, such as significantly different features, interpretable models, and model learning process interpretation by Grad-CAM++.The performance of our proposed method is verified on a public benchmark multicenter SEEG dataset and a private clinical SEEG dataset for a robust comparison. The experimental results demonstrate that the SEEG-Net model achieves the highest sensitivity and is state-of-the-art on cross-subject (for different patients) evaluation, and well deal with the known problems. Besides, we provide an SEEG processing and database construction flow, by maintaining consistency with the real-world clinical scenarios.According to the results, SEEG-Net is constructed to increase the sensitivity of SEEG pathological activity detection. Simultaneously, we settled certain problems about AI assistance in clinical DRE, built a bridge between AI algorithm application and clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助有志者采纳,获得10
44秒前
April完成签到 ,获得积分10
50秒前
慕青应助小鳄鱼夸夸采纳,获得10
1分钟前
1分钟前
1分钟前
楚楚发布了新的文献求助10
1分钟前
1分钟前
有志者发布了新的文献求助10
1分钟前
有志者完成签到,获得积分10
1分钟前
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
刘思琪发布了新的文献求助10
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
Akim应助万嘉俊采纳,获得10
2分钟前
2分钟前
万嘉俊发布了新的文献求助10
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
NS完成签到,获得积分10
3分钟前
3分钟前
Eiland发布了新的文献求助10
3分钟前
刚子完成签到 ,获得积分10
3分钟前
大模型应助刘思琪采纳,获得10
3分钟前
斯文败类应助Eiland采纳,获得30
3分钟前
爱静静应助Gavin采纳,获得10
3分钟前
Eiland完成签到,获得积分20
3分钟前
李歪歪完成签到 ,获得积分20
3分钟前
4分钟前
狮子座发布了新的文献求助10
4分钟前
科研通AI2S应助狮子座采纳,获得10
4分钟前
4分钟前
陆黑暗完成签到 ,获得积分10
4分钟前
刘思琪发布了新的文献求助10
4分钟前
Jasper应助刘思琪采纳,获得10
4分钟前
刘思琪完成签到,获得积分20
4分钟前
柒八染完成签到 ,获得积分10
5分钟前
zzhui完成签到,获得积分10
6分钟前
rengar完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244776
求助须知:如何正确求助?哪些是违规求助? 2888424
关于积分的说明 8252869
捐赠科研通 2556891
什么是DOI,文献DOI怎么找? 1385460
科研通“疑难数据库(出版商)”最低求助积分说明 650176
邀请新用户注册赠送积分活动 626294